

1. オペレーションズリサーチの 概要

URL: https://www.kkaneko.jp/cc/or/index.html

金子邦彦

オペレーションリサーチとは

オペレーションズリサーチとは、データ等の<mark>根拠</mark>に 基づいて<u>意思決定</u>を行える技術

- ◆ 在庫は, <mark>何個置いて</mark>おくか
- ▶ 受付には, <mark>何人用意</mark>するか
- ◆ たくさんある作業のうち,何を,
- いつ行ったら良いのか

15回の計画

1	オペレーションズリサーチの概要	9	資金計画と投資効率
2	配送計画、リードタイム	10	線形計画法を Excel で解く
3	作業リスト、PERT図	11	一次式
4	モンテカルロシミュレーション	12	中間まとめ
5	ランダムウオーク	13	囚人のジレンマ
6	待ち行列シミュレーション	14	経路の探索
7	正規分布	15	総合演習
8	ゲーム理論		

在庫とは:取引などに備えて,品物を倉庫に置くこと

このような問題を解きます

◆ 在庫が場所をとる

- ◆ 在庫が古くなる,傷む
- ◆ 在庫がなくて,仕事が進まない

待ち行列とは: あるサービスを受けるために, 待っている人などの行列

線形計画法とは:線形の制約のもとで、ある線形式の値を最大化(あるいは最小化)すること

(例)限られた材料で、なるべく多くの製品を作る.

材料: たまご 100個. ごはん 50杯

レシピ: ゆでたまご1個 = たまご1個

ネットワーク計画

- ネットワーク計画は、路線網、通信網、道路網のように、何かを網目のようにつないでネットワークを作るとき、なるべく良いネットワークになるように計画すること
 - A店:100個Xさん:20個欲しいB店:50個Yさん:80個欲しい

	Xさん	Yさん	合計
A店	20	30	50
B店	0	50	50
合計	20	80	100

ゲーム理論

- ゲーム理論とは: ゲームの参加者の行動を見極めて,できるだけ自分の得点が高くなるような駆け引き
- 宿題が100ページ出た!
- ▶ 仲間2人で50ページずつに分けて,家に持って帰る
- 2人ともが宿題を終えれば、賞金が出る
 ただし、互いに連絡しあうことはできない.
- 仲間が信頼できない場合:自分もさぼってしまいたい誘惑
 協力,競争,駆け引き

 日程計画では、やるべき作業(タスク)の順序を 付け、どの作業列が、全体の遅れに影響を及ぼす のか(クリティカルパス)を見極める

オペレーションズリサーチの様々な手法

- 線形計画法, 整数線形計画法
- プロジェクトスケジュール
- ・待ち行列
- ・ゲーム理論
- 在庫管理
- ・このような手法も
- ネットワーク流量、決定木、階層的分析法
- 動的計画法
- マルコフモデル,マルコフ連鎖
- 非線形計画法
- 信頼性に関するモデル

オペレーションズリサーチは、社会のさまざまな 局面で、合理的な意思決定を行うのに役立つ

「確かに正しく意思決定をした」ことの根拠を得る

1-1. 乱数

(オペレーションズリサーチ)

URL: https://www.kkaneko.jp/cc/or/index.html

金子邦彦

• コンピュータには, <mark>ランダムな数</mark>(**乱数**)を発生 する機能がある

乱数の範囲の調整

元の乱数は**0か** ら1の範囲とす る 2倍すると, 範 囲は**0 から 2** 2倍して,1引く と,範囲は**-1 から1**

Excel を起動する. 起動したら「**空白のブッ ク**」を選ぶ

次のように操作して,新しく**空白のブック**を 作る

「**ファイル**」を クリック

「**新規**」 をクリック

-1 以上 1 未満の乱数の式 「=RAND() * 2 - 1」をセル A1 に書く

A1に式「=RAND() * 2 - 1 」

セル A1 の式を, A2 から A10 に「コピー&貼り付け」する. 右クリックメニューが便利

実行のたびに、違う値になる (乱数なので、ランダムな値)

まとめ

• コンピュータには, <u>ランダムな数</u>(乱数)を発生 する機能がある

	А	
1	-0.56098	
2	0.867836	
3	0.889238	
4	-0.54898	
5	0.728222	
6	0.582545	
7	-0.12315	
8	0.996481	
9	0.464655	
10	0.877933	

1-2. 確率を変えながら行う シミュレーションの例

(オペレーションズリサーチ)

URL: https://www.kkaneko.jp/cc/or/index.html

金子邦彦

- ・シミュレーションは、現実を模倣すること
- さまざまな実験を行うことも可能
- ・ある行動を実行する前に、前もって、<mark>データを</mark> 使っていろいろなことを<mark>確かめておく</mark>ことなどに 役立つ

自動販売機は、10円玉が3枚増える(+3)

自動販売機は、10円玉が2枚減る(-2)

- ◆ 商品は 30円
- ◆ 硬貨は **10円玉、50円玉**だけが使える

ある人は**10円玉×3枚**で買い物 **自動販売機は、10円玉が3枚増える(+3)** ある人は50円玉×1枚で買い物(**おつり20円** を受け取る)

自動販売機は、10円玉が2枚減る(-2)

<u>15人</u>が買い物を終えたとき、10円玉は何枚増えるか(減るか)

Excel を起動する. 起動したら「**空白のブッ ク**」を選ぶ

セル A1からK1 に 値 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 を書く

	А	В	С	D	E	F	G	Н	I.	J	К
1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1

10円玉を使う人の確率を 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% の11パターン設定している

セル A2 に式「=IF(RAND() < A\$1, 3, -2)」 を書く

	Α	В	С
1	0	0.1	0.2
2	-2		
3			

セル A2 の式を, A3 から A16 に「コピー &貼り付け」する. 右クリックメニューが便利

	А	В
1	0	I
2	-2	
3	-2	
4	-2	
5	-2	
6	-2	
7	-2	
8	-2	
9	-2	
10	-2	
11	-2	
12	-2	
13	-2	
14	-2	
15	-2	
16	-2	
17		m (chu

今度は, セル A2 の式を, B2 から K16 に 「コピー&貼り付け」する. 右クリックメ ニューが便利

	Α	В	С	D	E	F	G	Н	I.	J	K	
1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
2	-2	-2	-2	-2	3	3	-2	3	3	3	3	
3	-2	-2	-2	-2	-2	-2	3	3	3	3	3	
4	-2	-2	3	-2	3	-2	3	3	3	3	3	
5	-2	-2	3	-2	3	3	3	3	3	3	3	
6	-2	-2	-2	-2	3	-2	-2	3	3	3	3	
7	-2	-2	3	-2	3	3	-2	-2	3	3	3	
8	-2	-2	3	-2	3	3	3	-2	3	3	3	
9	-2	-2	3	-2	3	3	3	-2	3	3	3	
10	-2	-2	-2	-2	3	-2	-2	3	3	3	3	
11	-2	-2	-2	3	-2	-2	-2	3	-2	3	3	
12	-2	-2	-2	-2	-2	3	3	-2	3	3	3	
13	-2	-2	-2	-2	-2	3	3	-2	3	3	3	
14	-2	-2	-2	-2	3	3	-2	3	3	3	3	
15	-2	-2	-2	3	-2	-2	3	3	3	3	3	
16	-2	3	-2	-2	-2	-2	3	3	3	3	3	
17												

※ **乱数**なので,実行のたびに違った値になる 28

セル A17 に式「=SUM(A2:A16) 」を書く

13	-2	-2	-
14	-2	-2	-
15	-2	-2	-
16	-2	-2	-
17	-30		
18			
10			

セル A17 の式を, B17 から K17 に「コ ピー&貼り付け」する. 右クリックメニューが便利

	А	В	С	D	Е	F	G	Н	- I	J	К
1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
2	-2	-2	-2	-2	3	3	3	3	-2	3	3
3	-2	3	-2	-2	-2	-2	-2	3	3	3	3
4	-2	-2	-2	-2	3	-2	3	-2	3	3	3
5	-2	-2	-2	-2	3	3	3	3	3	3	3
6	-2	-2	-2	-2	-2	3	-2	3	-2	3	3
7	-2	-2	-2	-2	-2	3	-2	3	3	-2	3
8	-2	-2	-2	-2	-2	3	3	-2	3	3	3
9	-2	-2	-2	-2	-2	3	3	-2	3	3	3
10	-2	-2	3	-2	-2	3	3	3	3	3	3
11	-2	-2	-2	-2	-2	-2	-2	3	-2	3	3
12	-2	-2	-2	-2	-2	-2	3	3	3	3	3
13	-2	-2	-2	-2	-2	3	3	3	3	3	3
14	-2	-2	-2	-2	-2	3	3	3	3	3	3
15	-2	-2	-2	-2	-2	-2	3	3	3	3	3
16	-2	-2	-2	-2	3	-2	-2	-2	3	3	3
17	-30	-25	-25	-30	-10	15	20	25	30	40	45
10											

30

セル **A17 から K17 までのエリア** を,マウス でドラッグして(範囲選択),折れ線グラフを 選ぶ

できた**折れ線グラフ**を使い、次のことを確認

10円玉を使う人が、全体の**4 0%**のときは、 自動販売機の10円玉が増えもせ ず、減りもしなさそうだ!

ポイント

シミュレーションなので、数式を 考えずに済んでいる。

※ 数式を解くのが難しい場合
 でも、シミュレーションに
 より、結論を得ることができる

1-3. ランダムな到着

(オペレーションズリサーチ)

URL: https://www.kkaneko.jp/cc/or/index.html

金子邦彦

・シミュレーションは、仮説の検証に役立つ

例えば, スーパーのレジなどの待ち行列. 意外と,私の寸前に,別の人が並ぶことがある. 私の運が悪いのか?

→ No このことをシミュレーションで確認

◆ 客が1時間(60分)の間に、12人来そう! というとき

上の図のように、5分ごとに1人ずつ来ることは、 まずあり得ません

◆ 客が1時間(60分)の間に、12人来そう! というとき

客は60分の間に、<u>ランダム</u>にやってきます

次のように操作して, 新しく**空白のブック**を作る

ጋァብ	ル ホ- メ +TP	_ 挿入	ページ レイアウト	ト数式	データ	校問	表示
貼り付	」 Ella コピー け ダ 書式の	ッ ・ ロピー/貼り付	游ゴシック B I U	•	• 11 •	A A E	
	クリップボー	-F	G	フォント		G	
F8		: ×	√ f _x	D	F	F	C
1	5	D				F	G
3	1						
4 5	3						
6						i	

「ファイル」を クリック

「**新規**」 をクリック

0 以上 60 未満の乱数の式 「=TRUNC(RAND() * 60)」をセル A1 に 書く

7		Α	В	С	D
	1	=TRUNC(
-	2				
	3				

A1に式「=TRUNC(RAND() * 60)」

客が**12人来る**という状況をシミュレーション ^{の活動} したいので,

A1 の式を A2 から A12 に「コピー&貼り付け」」する.

右クリックメニューが便利

実行のたびに違う値になる (乱数なので、ランダムな値)

「値」を.B列に「**コピー&貼り付け**」したい

ドラッグして,範囲選択

B列の値を並べ替えたい

①まず,B1からB12を ドラッグして,範囲選択

B列が, 左のようになることを**確認**[®]

次に, **セル C2** に次の式を入れる

=B2-B1

これは, 到着間隔を求める式

C2の式を, C**3**から C**12**に 「コピー&貼り付け」する. 右クリックメニューが便利

	А	В	С
1	9	11	
2	13	20	9
3	30	25	5
, 4	9	28	3
, 5	12	47	19
, 6	22	47	0
, 7	9	51	4
8	49	51	0
9	48	53	2
10	36	55	2
11	9	55	0
12	38	59	4
40			

C列が, 左のようになることを確認

次のことを確認

60分の間に 12人

平均で5分間隔

間隔はばらばら

0,1,2分のような小さな値も,けっ こう多い