トップページ情報工学を学ぶ人工知能の実行,Python プログラム (Windows 上)EDSR-TensorFlow による超解像(jmiller656/EDSR-TensorFlow,Python 3.7,TensorFlow 1.15.5, scipy 1.1.0 を使用)(Windows 上))

EDSR-TensorFlow による超解像(jmiller656/EDSR-TensorFlow,Python 3.7,TensorFlow 1.15.5, scipy 1.1.0 を使用)(Windows 上))

URL: https://github.com/jmiller656/EDSR-TensorFlow

手順の要点: 前準備として,NVIDIA CUDA 10.0, NVIDIA cuDNN 7.6.5, Python 3.7, TensorFlow 1.15.5 等をインストール.

ソフトウェア等の利用条件等は,利用者で確認すること.

謝辞:ソフトウェアの作者に感謝します

前準備

Visual Studio Community 2017 のインストール

NVIDIA CUDA 10.0 は Visual Studio Commnity 2017, 2015, 2013, 2012 と連携して動く機能がある.

NVIDIA CUDA 10.0 のインストールの前に, Visual Studio Commnity 2017 のインストールを行う.

Visual Studio Commnity 2017 のインストールは, https://visualstudio.microsoft.com/ja/vs/older-downloads/ で「2017」を選び,「ダウンロード」をクリック. その後表示されるダウンロードの画面で, 「Visual Studio Commnity 2017」を選ぶ.

Git のインストール

Git のページ https://git-scm.com/ からダウンロードしてインストール:

NVIDIA ドライバ,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 のインストール

GPU は,グラフィックス・プロセッシング・ユニットの略で、コンピュータグラフィックス関連の機能,乗算や加算の並列処理の機能などがある. NVIDIA CUDA ツールキット は,NVIDIA社が提供している GPU 用のプラットフォームである.

インストールの詳細説明

Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 のインストール: 別ページで説明している.

NVIDIA ドライバのインストール

インストールの要点

インストールの詳細説明

NVIDIA CUDA ツールキット 10.0, NVIDIA cuDNN 7.6.5 のインストール

インストールの詳細説明

Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 のインストール: 別ページで説明している.

インストールの要点

Python 3.7 64 ビット版のインストール,pip と setuptools の更新

① Python 3.7 64 ビット版のインストール(Windows 上)

インストールの詳細説明

https://www.kkaneko.jp/tools/win/python37.html

Python のインストールでの注意点

インストール手順

Windows での Python 3.7 のインストール(あとのトラブルが起きにくいような手順を定めている)

  1. Python の URL を開く

    URL: https://www.python.org

  2. Windows 版の Python 3.7 をダウンロード

    ページの上の方にある「Downloads」をクリック,「Downloads」の下にメニューが出るので,その中の「Windows」をクリック.

    そして,Python 3.7.x (x は数字)を探す.

    そして,Windows の 64ビット版のインストーラをダウンロードしたいので,「Windows x86-64 executable installer」を選ぶ

    [image]
  3. インストール時の設定
    1. いまダウンロードした .exe ファイルを右クリック, 右クリックメニューで「管理者として実行」を選ぶ.

      [image]
    2. Python ランチャーをインストールするために,「Install launcher for all users (recommended)」をチェック.

      ※ すでに Python ランチャーをインストール済みのときは, 「Install launcher for all users (recommended)」がチェックできないようになっている場合がある.そのときは,チェックせずに進む.

    3. Add Python 3.7 to PATH」をチェック.

      [image]
    4. Customize installation」をクリック.

      [image]
    5. オプションの機能 (Optional Features)は,既定(デフォルト)のままでよい. 「Next」をクリック

      [image]
    6. Install for all users」を選んでおいたほうが,複数人で使えて便利という考え方もある.

      そして,Python のインストールディレクトリは,「C:\Program Files\Python37」のように自動設定されることを確認.

      Install」をクリック

      [image]
    7. Disable path length limit」が表示される場合がある.クリックして,パス長の制限を解除する

      [image]
    8. インストールが終了したら,「Close」をクリック
  4. インストールのあと,Windows のスタートメニューに「Python 3.7」が増えていることを確認.
  5. システムの環境変数 Path の確認のため,新しくコマンドプロンプトを開き,次のコマンドを実行.

    pypipパスが通っていることの確認である.

    where py
    where pip
    

    where py では「C:\Windows\py.exe」 が表示され, where pip では「C:\Program Files\Python37\Scripts\pip.exe」 が表示されることを確認.

② pip と setuptools の更新(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

    コマンドプロンプトを管理者として実行: 別ページで説明している.

  2. 次のコマンドを実行

    py -3.7 -m pip install -U pip setuptools
    

【pip の利用】

pip は,次のコマンドで起動できる.

TensorFlow 1.15.5, Keras 2.3.1 のインストール

コマンドプロンプト管理者として実行し,次のコマンドを実行

py -3.7 -m pip uninstall -y tensorflow tensorflow-cpu tensorflow-gpu tensorflow-text tf-models-official tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer scipy pandas matplotlib
# TensorFlow 1.15.5 のため numpy, protobuf の古いバージョンを使用.エラーが出にくいと考えられる numpy 1.16.2, protobuf 3.19.4 を使用
py -3.7 -m pip install -U numpy==1.16.2 protobuf==3.19.4 tensorflow-gpu==1.15.5 keras==2.3.1 scipy==1.5.4
py -3.7 -m pip install git+https://github.com/tensorflow/docs
py -3.7 -m pip install git+https://github.com/tensorflow/examples.git
py -3.7 -m pip install git+https://www.github.com/keras-team/keras-contrib.git

このページで説明のために使用する画像

画像ファイル fruits.jpg, home.jpg のダウンロード

画像ファイル fruits.jpg, home.jpg のダウンロードは, Windows でコマンドプロンプト管理者として実行し, 次のコマンドを実行.

mkdir c:\image
cd c:\image
curl -L https://github.com/opencv/opencv/blob/master/samples/data/fruits.jpg?raw=true -o fruits.jpg
curl -L https://github.com/opencv/opencv/blob/master/samples/data/home.jpg?raw=true -o home.jpg

上のコマンドがうまく実行できないときは, 別ページを参考にダウンロードを行う.

https://github.com/opencv/opencv/tree/master/samples/data で公開されている fruits.jpg, home.jpg を使用する(謝辞:画像の作者に感謝します)

顔識別(jmiller656/EDSR-TensorFlow, Python 3.7, TensorFlow 1.15.5 を使用)

Windows での手順を下に示す.Ubuntu でも同様の手順になる.

  1. Windows で,コマンドプロンプト管理者として実行
  2. 作業用に c:\do.bat というファイルを作る.

    まず,メモ帳を開く(メモ帳以外のエディタでも問題ない)

    notepad c:\do.bat
    

    [image]

    次のように編集する.

    sed -i "s/import tensorflow as tf/import tensorflow.compat.v1 as tf/g"
    sed -i "s/from tensorflow import/from tensorflow.compat.v1 import"
    sed -i "s/from keras import/from tensorflow.compat.v1.keras import"
    
  3. jmiller656/EDSR-TensorFlow のダウンロード

    Windows での手順を下に示す.Ubuntu でも同様の手順になる.

    cd %HOMEPATH%
    rmdir /s /q EDSR-TensorFlow
    

    [image]

    git clone https://github.com/jmiller656/EDSR-TensorFlow
    cd EDSR-TensorFlow
    

    [image]
  4. 前提パッケージのインストール

    scipy はバージョン 1.1.0 のものを使う.

    py -3.7 -m pip install scipy==1.1.0 tqdm argparse
    
  5. 2to3 -w でソースコードを書き替え

    py -3.7 "C:\Program Files\Python37\Tools\scripts\2to3.py" -w test.py
    

    [image]

    py -3.7 "C:\Program Files\Python37\Tools\scripts\2to3.py" -w data.py
    

    [image]
  6. 事前学習済みモデル

    次のページの説明に従い,事前学習済みモデルを取得.

    URL: https://github.com/jmiller656/EDSR-TensorFlow

    [image]

    ファイルは,%HOMEPATH%\EDSR-TensorFlow\saved_models に置く

    [image]
  7. Python プログラムの実行

    まず,ディレクトリの移動

    cd %HOMEPATH%
    cd EDSR-TensorFlow
    

    [image]

    実行してみる.「fruits.jpg」のところは,画像ファイル名を指定すること.

    copy c:\image\fruits.jpg .
    py -3.7 test.py --image fruits.jpg --scale 2
    

    [image]

    結果は「out」の下に残る.

    元画像は次の通り

    [image]

    出来た画像は次の通り

    [image]