
Panda3D 基礎技術

3Dゲームエンジンの基本概念

Panda3D

•オープンソースの3Dゲームエンジン

• C++で実装され、Pythonバインディングを提供

• Disneyが開発し、2002年にオープンソース化

• Carnegie Mellon大学が共同で開発

•クロスプラットフォーム対応（Windows、Linux、
macOS）

Panda3D の主要な機能

• 既定のマウス操作 右ボタン，左ボタンを押しな
がらマウスを動かすと，シーン全体が動く

• 3次元モデルファイルの読み込み loadModel

• 3次元モデルの配置

• 位置 setPos

• 拡大縮小 setScale

• 回転 setQuat

• イベントハンドラの登録 accept

• キーコードの例 “A”, “space”, “enter”, “arrow_left”,

“arrow_up”, “arrow_down”, “arrow_right” など

• オブジェクトの位置取得と操作 set, get

• 自動で動かす taskMgr.add
3

ゲームループとフレーム

ゲームループの概念

• 3Dゲームエンジンの繰り返し処理

• ゲーム実行中、毎秒数十～数百回実行

• 1回の繰り返し = 1フレーム

FPS（Frames Per Second）

• フレームレートの指標

• 一般的なゲームでは 60fpsが目安

デルタ時間（Delta Time）

• 前フレームから現在フレームまでの経過時間（秒単
位）

• フレームレート非依存の動作を実現

例：1秒間に10度回転させる場合→ 毎フレーム「10 ×

dt」度ずつ回転

Panda3Dプログラムの基本構造

1. モジュールのインポート

↓

2. ShowBaseクラスを継承したアプリケーションクラス
の定義

↓

3. オブジェクトの作成と設定

↓

4. app.run()でゲームループ実行

継承とは

• 既存のクラス（ShowBase）の機能を引き継いで新し
いクラスを作成する仕組み

• class MyApp(ShowBase): と記述することで、
ShowBaseの機能を持つMyAppクラスを定義

ShowBaseクラスの継承

• Panda3Dアプリケーションの基盤

• レンダリング、入力管理、タスク管理を担当

コード例

from direct.showbase.ShowBase import ShowBase

class MyApp(ShowBase):

def __init__(self):

 ShowBase.__init__(self)

 # ここにオブジェクトの作成・設定を記述

app = MyApp()

app.run()

3D直交座標系の基礎

3次元直交座標系

• XYZ軸による位置表現

• 3つの数値(x, y, z)で空間内の点を特定

Panda3Dの座標系（Z-up右手座標系）

Y(前)

Z(上)

X

ベクトルと座標系の種類

• ベクトル

• 大きさと方向を持つ量

• (x, y, z)の3成分で表現

• 位置、速度、加速度などを表現

• 座標系の種類

1. 絶対座標（ワールド座標）

• 原点(0, 0, 0)を基準とした座標

2. 相対座標（ローカル座標）

• 親オブジェクトを基準とした座標

• 親が移動すると子も一緒に移動

• シーングラフ

• オブジェクトを階層構造（木構造）で管理

• self.renderがルートノード

• reparentTo()で親子関係を設定

3つの基本変換

• 移動（Translation）

 cube.setPos(0, 5, 1) # X=0, Y=5, Z=1に

• 回転（Rotation）
• Heading（H）：Y軸周りの回転

• Pitch（P）：X軸周りの回転

• Roll（R）：Z軸周りの回転

• 角度は 0～360度で指定

 cube.setH(45) # Y軸周りに45度回転

• スケール（Scale）
• オブジェクトの大きさを変更

• 1.0で元のサイズ、2.0で2倍、0.5で半分

 cube.setScale(2, 1, 1) # X方向に2倍```

カメラと視点制御

• 視点（Camera Position）

• 観察者の位置

• camera.setPos(x, y, z) で設定

• 注視点（Look-at Point）

• カメラが向いている目標点

• camera.lookAt(object) で設定

カメラ位置

● -------- 視線方向 〇 注視点

メッシュ

• メッシュ（Mesh）

• 3Dオブジェクトの形状を定義する頂点と面の集合

• loader.loadModel() で読み込み

• Panda3Dの基本図形

• models/box：立方体

• models/plane：平面

色の表現 (RGB)

• Red、Green、Blueの3成分

•各成分は0.0～1.0の範囲

• setColor(R, G, B, A) で設定

•例：(1, 0, 0)は赤、(0, 1, 0)は緑、(1, 1, 1)は白色

cube.setColor(1, 0.5, 0, 1)

ここまでのまとめ

•ゲームループ

•デルタ時間によるフレームレート非依存

• 3D空間の表現: ３次元直交座標系

•シーングラフ：オブジェクトの階層管理

•オブジェクトの制御：移動、回転、スケール

•メッシュ

•色

ゲームエンジンの利用により３次元アプリの開発が
容易になる

ライティングとシェーディング

環境光（AmbientLight）

•全方向から均一に照らす光

•影を作らず、シーン全体を明るく照らす
ambient = AmbientLight('ambient’)
ambient.setColor((0.4, 0.4, 0.4, 1))
ambient_np = self.render.attachNewNode(ambient)
self.render.setLight(ambient_np)

指向性光源（DirectionalLight）

•太陽光のように特定の方向から平行に照らす光

•明確な影を作り、立体感を表現
sun = DirectionalLight('sun’)
sun.setColor((0.8, 0.8, 0.8, 1))
sun_np = self.render.attachNewNode(sun)
sun_np.setHpr(45, -60, 0)
self.render.setLight(sun_np)

14

エンティティの生成と制御

3D空間内のオブジェクトをツリー構造で管理

例）

vehicle (親ノード)

├─ body (車体)

├─ wheel_fl (前左車輪)

├─ wheel_fr (前右車輪)

├─ wheel_rl (後左車輪)

└─ wheel_rr (後右車輪)

変換の伝播

•親ノードの移動→ 全ての子ノードも移動

•子ノードの移動→ 親ノードは影響を受けない
15

入力処理

2つの入力方式

• イベント駆動：単発の入力、ジャンプ、攻撃など
def jump(self):

if not self.is_jumping:

 self.jump_force = 5

 self.is_jumping = True

self.accept('space', self.jump)

• キー状態管理：継続的な入力、移動、回転など
self.keys = {'w': False, 'a': False, 's': False, 'd': False}

def setKey(self, key, value):

 self.keys[key] = value

self.accept('w', self.setKey, ['w', True])

self.accept('w-up', self.setKey, ['w', False])
状態チェック

If self.keys[‘w’]:

 self.player.setY(self.player.getY() + self.speed * dt)

16

物理演算

•ベクトル：位置、速度、加速度を表現

•重力加速度：地表では約-9.8 m/s²（下向き）

物理シミュレーションの2段階計算

self.gravity = -9.8

ステップ1：加速度を速度に加算

velocity.z += self.gravity * dt

ステップ2：速度を位置に加算

new_pos = box.getPos() + velocity * dt

box.setPos(new_pos)

17

衝突判定

オブジェクトが接触しているかを座標で判定。

collision_z = 0 # 地面の高さ

if box.getZ() <= collision_z:

 box.setZ(collision_z) # 位置を補正

 velocity.z = -velocity.z * 0.5 # 速度を反転（反発）

 # 停止判定

 if abs(velocity.z) < 0.1:

 velocity.z = 0

18

ここまでのまとめ

ライティングとシェーディング

• 環境光と指向性光源で立体感を演出

エンティティの生成と制御

• シーングラフの階層構造

• 親子関係による変換の伝播

入力処理

• イベント駆動とキー状態管理の使い分け

物理演算

• ベクトル、速度、加速度- 運動方程式による位置更新

• 衝突判定

19

ゲームエンジン応用の4つの重要ポイント

フレームレート非依存設計

↓ dt（経過時間）を提供

数値計算の離散化

↓ 計算結果を生成

動的データ構造の管理

↓ オブジェクトの追加・削除

動的ジオメトリの更新

↓ 視覚的表現

インタラクティブで物理的に正確なリアルタイムア
プリケーションを構築 20

フレームレート非依存の設計

•ゲームやシミュレーションは様々な環境で実行さ
れる。フレームレートが変動しても、動作が正し
く時間に沿ったものである必要がある。

def update(self, task):

 current_time = globalClock.getFrameTime()

 dt = current_time - self.prev_time # 前フレームからの経過時間

self.prev_time = current_time

 # 移動量 = 速度 × 時間

self.player.setY(self.player.getY() + self.speed * dt)

21

動的データ構造の管理

• ゲームやシミュレーションでは、オブジェクトの追加・削除が
発生する。

誤り：イテレーション中の元リスト変更

for item in self.collectibles:

 if condition:

 self.collectibles.remove(item) # 危険

正解：リストのコピーをイテレート

for item in self.collectibles[:]: # [:] でコピー作成

if condition:

 item.removeNode() # シーングラフから削除

self.collectibles.remove(item) # リストから削除

シーングラフ（描画対象）とデータ構造（管理リスト）の両方を
同期して更新

22

数値計算の離散化

• 連続的な物理現象をコンピュータで扱うには、時間と
空間を離散的な点で近似する必要がある。

• 連続的な微分方程式を差分方程式に変換

連続：速度 = d(位置)/dt

離散：速度 ≈ (現在位置 - 前回位置) / dt

velocity = (self.current[i][j] - self.previous[i][j]) / dt

連続：ラプラシアン = ∂²u/∂x² + ∂²u/∂y²

離散：上下左右4点の加重平均

laplacian = (u[i+1][j] + u[i-1][j] + u[i][j+1] + u[i][j-1] -
4*u[i][j]) / (spacing²)

23

動的ジオメトリの更新

• 静的なモデル読み込みだけでは表現できない動的な形状変化（波、変形、破壊
など）を実現。そのために、頂点データを直接操作

1. 動的更新可能なメッシュ作成（初期化時）

format = GeomVertexFormat.getV3n3c4()

vdata = GeomVertexData('mesh', format, Geom.UHDynamic) # UHDynamic指定

2. 頂点データの取得（更新時）

geom = self.mesh_node.modifyGeom(0)

vdata = geom.modifyVertexData()

3. 頂点位置の書き換え

vertex = GeomVertexWriter(vdata, 'vertex')

for i in range(grid_size):

 for j in range(grid_size):

 z = self.current[i][j] # 計算結果

vertex.setData3(x, y, z) # 頂点位置を更新
24

	スライド 1: Panda3D 基礎技術 3Dゲームエンジンの基本概念
	スライド 2: Panda3D
	スライド 3: Panda3D の主要な機能
	スライド 4: ゲームループとフレーム
	スライド 5: Panda3Dプログラムの基本構造
	スライド 6
	スライド 7: 3D直交座標系の基礎
	スライド 8: ベクトルと座標系の種類
	スライド 9: 3つの基本変換
	スライド 10: カメラと視点制御
	スライド 11: メッシュ
	スライド 12: 色の表現 (RGB)
	スライド 13: ここまでのまとめ
	スライド 14: ライティングとシェーディング
	スライド 15: エンティティの生成と制御
	スライド 16: 入力処理
	スライド 17: 物理演算
	スライド 18: 衝突判定
	スライド 19: ここまでのまとめ
	スライド 20: ゲームエンジン応用の4つの重要ポイント
	スライド 21: フレームレート非依存の設計
	スライド 22: 動的データ構造の管理
	スライド 23: 数値計算の離散化
	スライド 24: 動的ジオメトリの更新

