cs-9. 線形式,線形計画法
(コンピューターサイエンス)
URL: https://www.kkaneko.jp/cc/cs/index.html
1
金子邦彦
謝辞:この資料では「いらすとや」のイラストを使用しています
線形式、線形計画法の基本概念と有用性
Excelを用いた演習を通じて、線形式と線形計
画法の理解を深める
身近な例(プリンとケーキの製造)を用いて,
線形計画法を理解
データ分析に必要な知識とExcelスキルを同時
に学ぶ
2
アウトライン
1. 線形式
2. 線形式と Excel
3. 2変数の線形式と Excel
4. 線形不等式の制約条件と Excel
5. 線形計画法
6. 線形計画法と Excel
7. 線形計画法と Excel
3
Office 365 の種類
2種類ある.この授業では,どちらを使用しても問題
ない 4
Office 365 オンライン版
WEBブラウザで使う.
https://portal.office.com
各自の ID パスワードでサインインが必要.
Office 365 アプリ版
前もってインストールが必要
インストールでは,大量の通信が行われる.
(時間がかかる.通信費用にも注意)
9-1 線形式
5
6
データ分析
データの特徴抽出のため、線形式
用いたデータ変換を行う
コンピュータグラフィクス
3次元空間におけるオブジェクトの
移動、変形のために線形式を利用
物理法則
力学、電磁気学の方程式は、多くの
場合線形式で表現される
線形計画法
制約と、最大化あるいは最小化すべ
き目標関数線形式で扱う
線形式の有用性
線形式
7
0
x
ax+b
b
a < 0 のとき
右下に傾く
0
x
ax+b
ba = 0 のとき
水平
0
x
ax+b
ba > 0 のとき
右上に傾く
変数 x について
a x + b
a は傾き:x 1増えると、
結果がどの程度変化するか
b は、x = 0 のときの結果
の値
x 変数で、値は変化する
線形式
この式は、3次元空間中に平面を表す
a, b: 平面の傾斜
c: 平面の位置
x, y : 変数、平面上の点の場所に応じて変わる値 8
変数 x, y について
a x + b y + c
9-2 線形式と Excel
9
線形式と Excel
Excel のグラフ作成機能(特に散布図)を用いてデータをプ
ロットすることで、線形式の理解を深めることができる.
(この授業では行わないが)Excel には、データを線形式で
近似する(線形近似)といった、線形式に関する機能が備
わっている。その利用により、データの傾向の把握などが可
能になる。 10
演習
トピックス
線形式
Excel の散布図
11
変数 x についての線形式
5 x + 3
この散布図を作成
セル B1, B2 a, b の値を置く
12
セル A3 から A10 x の値を書く
13
セル B3 に式「= A3 * $B$1 + $B$2」を書く
この式を B4 から B10 にコピーする
14
5 x + 3
15
x = 0 のとき 3
x 1増えると, 5 増える
B 列の値を確認する
16
ここまでのまとめ
線形式はデータ分析、コンピュータグラフィクス、物理法
則、そして線形計画法など、多くの領域で利用される
線形式 ax+bにおいて、ax が1増えるときの結果の
変化量傾き)、b x = 0 のときの結果の値を表す。
(この式で、x は変数であり、その値は変化する。)
Excelのグラフ作成機能を用いて、データをプロットする
ことで、線形式の理解を深めることができる。ツールを使
いこなす能力は、データ分析などの実務に直結する。
17
9-3 2変数の線形式と Excel
18
いまから行うこと
2つの変数: x, y
x プリンの個数、y ケーキの枚数)
プリン1を作るのに2ケーキ1を作るのに
1が必要であるとき
たまごの使用量は 2 x + y
プリン1を作るのに牛乳 100ケーキ1を作る
のに牛乳 200が必要であるとき
牛乳の使用量 100 x + 200 y
19
たまごについての線形式
20
資源
たまご
製品
プリン、ケーキ
たまご個必要 プリン
たまご個必要 ケーキ
プリンの個数を x, ケーキの個数を y とすると:
資源と製品の関係は線形式になる
たまご = 2 x + y
線形式
演習
【トピックス】
線形式
21
変数 x, y についての線形式
たまご = 2 x + y
牛乳 = 100 x + 200 y
この式をさまざまな x, y
値で計算
次の値を書く.数字は半角で
22
プリン たまご個必要
ケーキ たまご個必要
B 列はあとで使いたいのであけておく
次を書き加える.数字は半角で
23
たまごをどれだけ使うか.
2 x + y 」を求めるための、次の式を書く.
セル F2 に式「=$C$2 * F$1 + $D$2 * $E2
24
0 になるので確認
セル F2 の式を,F3 から F7 (セル 5個分)
に「コピー&貼り付け」する. 右クリックメ
ニューが便利
0
1
2
3
4
5
のようになっている
ことを確認. 25
セル F2 の式を,G2 から K7 に「コピー&貼
り付け」する. 右クリックメニューが便利
26
プリン
ケーキ 2x + y
27
たまごの量
セル C2 の値を,4 に変えてみる.数字は半
角で.変化を見る
28
自動計算
セル C2 の値を,2 戻しておく数字は半
角で.
29
自動計算
いまの エクセルファイル 書き加える
30
資源と製品の関係は線形式になる
牛乳 = 100 x + 200 y
必要な牛乳の量を求めたい.
まず,Excel で次の値を書き加える.(セル A3,
C3, D3
31
セル E1 から K7 範囲選択し,右クリックメ
ニューで「コピー」を選び,E8 から K14 張り付け
32
牛乳をどれだけ使うか.
100 x + 200 y 」を求めるための、次の式を書く.
セル F9 に式「 =$C$3 * F$8 + $D$3 * $E9
33
0 になるので確認
セル F9 の式を,F10 から F14 (セル 5
分)に「コピー&貼り付け」する. 右クリッ
クメニューが便利
0
200
400
600
800
1000
のようになっている
ことを確認. 34
セル F9 の式を,G9 から K14 に「コピー&
貼り付け」する. 右クリックメニューが便利
35
プリン
ケーキ 100 x + 200 y
36
次で使うので,Excel を閉じないこと
牛乳の量
9-4 線形不等式の制約条件と
Excel
37
線形不等式
線形不等式は、意外と難しいものではない
線形不等式は、数値の範囲を制約するために使うことがで
きる
例えば、ある数値(abc)が与えられたとき、
2a + 3b + c 1000」のような条件式を設ける。
この条件式は、 2a + 3b + c の値が1000を超えないようにする
制約を表す。
線形不等式数値の範囲制約するために使うことができ
る。
38
いまから行うこと
たまごの使用量は 2 x + y
牛乳の使用量は 100 x + 200 y
卵は限りがある(量が 10 である)という制約条件
線形不等式
2 x + y 10
牛乳は限りがある(量が 1000 である)という制約条
線形不等式
100 x + 200 y 1000
39
演習
トピックス
制約条件
条件付き書式設定
40
変数 x, y についての線形不等式
たまご 2 x + y 10
牛乳 100 x + 200 y 1000
x, y の値によっては、制約条件を
満足する場合もあれば、制約条件
を満足しない場合もある。
41
たまご = 2 x + y
たまご10 しかありません(制約条件)
42
たまご = 2 x + y
たまご10 しかありません(制約条件)
変数 x, y について
2 x + y 10
前のパート「9-3. 2変数の線形式 Excel」の
ものを引き続き使用する
セル F2 から K7 範囲選択し、条件付き書式
次ページに続く 43
オンライン版
アプリ版
どちらか
の表示
③「セルの強調表示ルール」→「指定の値より大きい
と操作. 10」を指定し、OKをクリック
44
指定の値より大きい
10」は半角で
アプリ版
オンライン版
10」は半角で
指定の値より大きい
いまできたこと
45
ピンクの部分は材料不足
(制約条件を満たさない
プリン
ケーキ
たまごの量
46
牛乳 = 100 x + 200 y
牛乳が 1000 しかありません(制約条件)
47
牛乳 = 100 x + 200 y
牛乳が 1000 しかありません(制約条件)
変数 x, y について
100 x + 200 y 1000
セル F9 から K14 範囲選択し、条件付き
書式
次ページに続く 48
オンライン版
アプリ版
どちらか
の表示
⑤「セルの強調表示ルール」→「指定の値より大きい
と操作. 1000」を指定し、OKをクリック
49
指定の値より大きい
1000」は半角で
アプリ版
オンライン版
1000」は半角で
指定の値より大きい
いまできたこと
50
ピンクの部分は材料不足
(制約条件を満たさない
プリン
ケーキ
牛乳の量
次で使うので,Excel を閉じないこと
まとめ
変数 x y についての線形不等式
の使用量の制約 2 x + y 10
牛乳の使用量の制約 100 x + 200 y 1000
x : プリンの個数、 y : ケーキの枚数
線形不等式は、特定の資源(この場合は卵と牛乳)に対する使
用量の制約条件を表す。
実際に使用する資源の量が、その資源の用可能な量超えな
こと。
xy (それぞれプリンの個数ケーキの枚数)の値によっては、
これらの制約満たす場合もあれば満たさない場合もある。
制約条件を満たす x y の組み合わせを見つけることが、大切
になる。(そのための方法が線形計画法なる) 51
9-5 線形計画法
52
線形計画法の実用性
生産現場(例:工場)では、資源(労働力、原材料、機械
の稼働時間など)が限られている
線形計画法は、このような「有限の資源」を効率的に利用
する策を立てる方法
53
線形計画法
線形計画法は限られた資源を最も効率的に活用するため
の意思決定に役立つ.
目標関数(例:利益の最大化やコストの最小化)を制約条
件下最大化または最小化することで、最適な策を導き出
す。
目標関数 売り上げ「 150 x + 200 y最大化
(プリン150円、ケーキ200円)
制約条件を扱うために線形不等式を使用。
の使用量の制約 2 x + y 10
牛乳の使用量の制約 100 x + 200 y 1000
x : プリンの個数、 y : ケーキの枚数
54
線形計画法の用途の例
限られた材料で,なるべく多くの製品を作る.
55
線形計画法の有用性
限られた材料で,なるべく多くの製品を作る.
次の問題などを解決
資源が余る
安い生産物をたくさん作っ
てしまう
56
9-6 線形計画法と Excel
57
演習
トピックス
制約条件
条件付き書式設定
58
目標関数
売り上げ「 150 x + 200 y
最大化
(プリン150円、ケーキ200円)
前のパート「線形不等式の制約条件と Excel」の続きである。
次を書き加える.数字は半角で
59
次を書き加える.数字は半角で
60
収益
150 x + 200 y 」を求めるための、次の式を書く.
セル F16 に式「 =$C$4 * F$15 + $D$4 * $E16
61
0 になるので確認
セル F16 の式を,F17 から F21 (セル 5
分)に「コピー&貼り付け」する. 右クリッ
クメニューが便利
0
200
400
600
800
1000
のようになっている
ことを確認. 62
セル F16 の式を,G16 から K21 に「
ピー&貼り付け」する. 右クリックメニュー
が便利
63
収益
プリン(1個150円)
ケーキ(1個200円)
64
最大の収益は 1100
だと分かる
65
線形計画法の例
・資源 たまご牛乳
・生産物 プリン(x)ケーキ(y)
・資源と生産物の関係
たまご = 2 x + y
牛乳 = 100 x + 200 y
・資源に関する制約条件
たまご 最大 10 2 x + y 10
牛乳 最大 1000 100 x + 200 y 1000
・目標関数 150 x + 200 y の最大化
x = 2, y = 4 のとき,
150 x + 200 y の最大値 1100 66
線形式
線形式
線形式
全体まとめ
1.線形式
ax+b では、ax1増えるときの ax+b」の
化量(傾き)、 bx=0のときの「ax+b」の値を表す
2. 線形不等式は、数値の範囲を制約できる
例:「2a + 3b + c 1000」という線形不等式は 2a
+ 3b + cの値が1000を超えないという制約条件
3. 線形計画法は、制約条件(例:原材料の量、労働
力、機械の稼働時間など)の下で、目標関(例:
利益 = 売上 - コスト)を最大化または最小化するこ
とで、最適な生産計画や資源配分を導き出す 67
線形式や線形計画法の理解Excelを用いた実
践的スキルの習得
現代社会で求められるデータ分析スキルの習
線形式の幅広い分野への応用を通じた,広い
視野の獲得。日常生活や業務における最適化で,
線形式という考え方が有用
実務で活用できる有用なスキル.在庫管理、
生産計画、資源配分などビジネスの意思決定に
直結。専門家としてのスキルと視野の向上
68
今回の授業で学ぶ意義と満足感
9-7 演習
(必須ではないが、さらに学
習したい人は、自習に利用し
てください)
69
最大化の例
ブラックコーヒー 1個 130
ミルクコーヒー 1個 120
ブラックコーヒーの個数を x,
ミルクコーヒーの個数を y
売り上げ「 130 x + 120 y
最大化
目標関数の最大化
70
資源と生産物の関係の例
71
ブラックコーヒーの原料
キリマンジャロ 0.15 コロンビア 0.05
ミルクコーヒーの原料
キリマンジャロ 0.05 コロンビア 0.1
ブラックコーヒーの個数を x,
ミルクコーヒーの個数を y
キリマンジャロ = 0.15 x + 0.05 y
コロンビア = 0.05 x + 0.1 y
線形式が2つ
制約の例
72
ブラックコーヒーの個数を x,
ミルクコーヒーの個数を y
キリマンジャロ 50トン以下
コロンビア 40トン以下 という制約は
0.15 x + 0.05 y50
0.05 x + 0.1 y 40
線形式で書かれた制約条件
ここまでのまとめ
線形不等式制約条件
目標関数の値が最大になるように,
変数の値を調整すること.
0.15 x + 0.05 y50
0.05 x + 0.1 y 40
130 x + 120 y
変数 x, y の値を調整
73
資源の最大値
キリマンジャロ 最大 50トンしか使えない
コロンビア 最大 40トンしか使えない
Excel に次のように入れる.数字は半角で
74
資源と生産物の関係
Excel に次のように入れる.数字は半角で
75
ブラックコーヒーの個数を x, ミルクコーヒーの
数を y とすると:
キリマンジャロ = 0.15 x + 0.05 y
コロンビア = 0.05 x + 0.1 y
収益
ブラックコーヒー 130
ミルクコーヒー 120
Excel に次のように入れる.数字は半角で
76
次のように書き加える.数字は半角で.E 列か
K 列に
77
ブラックコーヒー
ミルクコーヒー
78
資源のキリマンジャロをどれだけ使うか
セル F2 に式「=$C$2*F$1 + $D$2*$E2
79
資源のキリマンジャロをどれだけ使うか
セル F2 の式を,F3 から F7 (セル5個分)に「コピー
&貼り付け」する. 右クリックメニューが便利
80
資源のキリマンジャロをどれだけ使うか(続き)
セル F2 の式を,G2 から K7 に「コピー&貼り付け
する.
右クリックメニューが便利
81
確認
キリマンジャロの使用量
ブラックコーヒー
ミルクコーヒー
82
セル E1 から K7 範囲選択し,右クリックメ
ニューで「コピー」を選び,E8 から K14 張り付け
83
コロンビアをどれだけ使うか
セル F9 に式「=$C$3*F$8 + $D$3*$E9
84
コロンビアをどれだけ使うか
セル F9 の式を,F10 から F14 (セル5個分)に「
ピー&貼り付け」する.
右クリックメニューが便利
85
コロンビアをどれだけ使うか
セル F9 の式を,G9 から K14 に「コピー&貼り付
」する.
右クリックメニューが便利
86
確認
ブラックコーヒー
ミルク
コーヒー
87
コロンビア
の使用量
ミルク
コーヒー
キリマンジャロ
の使用量
セル E1 から K7 範囲選択し,右クリック
メニューで「コピー」を選び,E15 から K21
張り付ける
88
収益
セル G16 に式「=$C$4*F$15 + $D$4*$E16
89
収益
セル F16 の式を,F17 から F21 (セル5個分)に「
ピー&貼り付け」する. 右クリックメニューが便利
90
収益
セル F16 の式を,G16 から K21 に「コピー&貼り付
」する. 右クリックメニューが便利
91
収益
ブラックコーヒー
ミルクコーヒー
92
セル F2 から K7 範囲選択し、条件付き
書式をクリック
次ページに続く 93
オンライン版
アプリ版
どちらか
の表示
⑰「セルの強調表示ルール」→「指定の値より大きい
と操作. =$B$2」を指定し、OKをクリック
94
指定の値より大きい
=$B$2」は半角で
アプリ版
オンライン版
=$B$2」は半角で
指定の値より大きい
セル F9 から K14 範囲選択し、条件付き
書式をクリック
次ページに続く 95
オンライン版
アプリ版
どちらか
の表示
⑰「セルの強調表示ルール」→「指定の値より大きい
と操作. =$B$3」を指定し、OKをクリック
96
指定の値より大きい
=$B$3」は半角で
アプリ版
オンライン版
=$B$3」は半角で
指定の値より大きい
97
最大の収益は 62000 だと分かる
98
線形計画法の例
・資源 キリマンジャロコロンビア
・生産物 ブラックコーヒー(x)ミルクコーヒー(y)
・資源と生産物の関係
キリマンジャロ = 0.15 x + 0.05 y
コロンビア = 0.05 x + 0.1 y
・資源に関する制約条件
キリマンジャロ 最大 50
コロンビア 最大 40
・目標関数 130 x + 120 y をなるべく多くすること
99
線形式
線形式