face_recognition による顔検出,顔のランドマーク,顔検証の Python プログラム(Dlib,ageitgey/face_recognition,Python を使用)(Windows 上)
【サイト内の関連ページ】
- 説明資料: Dlib の機能概要 [PDF], [パワーポイント]
- 顔情報処理の Python プログラム(Dlib,face_recognition を使用) について: 別ページ »にまとめ
- Windows で動く人工知能関係 Pythonアプリケーション,オープンソースソフトウエア): 別ページ »にまとめている.
【用語説明】
- Dlib
Dlibは,数多くの機能を持つ C++ ライブラリ.機能には,機械学習,数値計算,グラフィカルモデル推論,画像処理,スレッド,通信,GUI,データ圧縮・一貫性,テスト,さまざまなユーティリティなどがある.Python API もある.
【関連する外部ページ】
ageitgey/face_recognition のページ: https://github.com/ageitgey/face_recognition
前準備
Git のインストール(Windows 上)
Gitは,バージョン管理システム.ソースコードの管理や複数人での共同に役立つ.
【サイト内の関連ページ】 Windows での Git のインストール: 別ページ »で説明
【関連する外部ページ】 Git の公式ページ: https://git-scm.com/
7-Zip のインストール(Windows 上)
7-Zipは,ファイル圧縮・展開(解凍)ツール
- Windows で,コマンドプロンプトを管理者として実行
コマンドプロンプトを管理者として実行: 別ページ »で説明
- 次のコマンドを実行
次のコマンドは,7-Zipをインストールするものである.
winget install --scope machine 7zip.7zip powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\7-Zip\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
【関連する外部ページ】
- 7-Zip の公式ページ: https://7-zip.opensource.jp/
Python のインストール(Windows 上)
【サイト内の関連ページ】
- Windows での Python 3.10,関連パッケージ,Python 開発環境のインストール(winget を使用しないインストール): 別ページ »で説明
- Windows での Anaconda3 のインストール: 別ページ »で説明
- Python のまとめ: 別ページ »にまとめている.
【関連する外部ページ】 Python の公式ページ: https://www.python.org/
Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)または Visual Studio 2022 のインストール(Windows 上)
【インストールの判断】 Build Tools for Visual Studio は,開発ツールセットである. Visual Studio は統合開発環境であり,いくつかの種類があり,Build Tools for Visual Studioの機能を含むか連携して使用するものである.インストールは以下の基準で判断してください:
- Build Tools for Visual Studio の機能のみが必要な場合
- Visual Studio の機能が必要である,あるいは,よく分からない場合
Visual Studio 2022 をインストールする際に,「C++ によるデスクトップ開発」を選択することで, Build Tools for Visual Studio 2022 の機能も一緒にインストールされる.
不明な点がある場合は,Visual Studio 全体をインストール を行う方が良い.
Build Tools for Visual Studio 2022 のインストール(Windows 上)
- Windows で,コマンドプロンプトを管理者として実行
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行
次のコマンドは,Build Tools for Visual Studio 2022と VC2015 再配布可能パッケージをインストールするものである.
- Build Tools for Visual Studio 2022 での C++ によるデスクトップ開発,CLI,ATL,MFC のインストール(Windows 上)
- Visual Studio Installer の起動
起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.
- Visual Studio Build Tools 2022 で「変更」を選ぶ.
- 「C++ によるデスクトップ開発」をクリック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」,「ATL」,「MFC」をチェックする.その後,「変更」をクリック.
- Visual Studio Installer の起動
Visual Studio のインストール(Windows 上)
- Windows で,コマンドプロンプトを管理者として実行
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行
次のコマンドは,Visual Studio Community 2022と VC2015 再配布可能パッケージをインストールするものである.
- Visual Studio での C++ によるデスクトップ開発,CLI のインストール(Windows 上)
- Visual Studio Installer の起動
起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.
- Visual Studio Community 2022 で「変更」を選ぶ.
- 「C++ によるデスクトップ開発」をチェック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」をチェックする.その後,「インストール」をクリック.
- Visual Studio Installer の起動
Dlib Python のインストール,Dlib のソースコード等と,Dlib の学習済みモデルのダウンロード
- Windows で,コマンドプロンプトを管理者として実行
コマンドプロンプトを管理者として実行: 別ページ »で説明
- Dlib のパッケージのインストール
次のコマンドを実行.
python -m pip uninstall -y dlib cd C:\ rmdir /s /q dlib git clone https://github.com/davisking/dlib cd C:\dlib python setup.py build --no DLIB_GIF_SUPPORT python setup.py install --no DLIB_GIF_SUPPORT
- Python の dlib パッケージがインストールできたことの確認
バージョン番号が表示されれば OK.下の図とは違うバージョンが表示されることがある.
python -c "import dlib; print( dlib.__version__ )"
- Dlib のソースコード等のダウンロード
次のコマンドを実行.
cd C:\ rmdir /s /q dlib git clone https://github.com/davisking/dlib
- Dlib の学習済みモデルのダウンロード
次のコマンドを実行.
cd C:\dlib cd python_examples curl -O http://dlib.net/files/mmod_human_face_detector.dat.bz2 curl -O http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2 curl -O http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2 curl -O http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 "c:\Program Files\7-Zip\7z.exe" x mmod_human_face_detector.dat.bz2 "c:\Program Files\7-Zip\7z.exe" x dlib_face_recognition_resnet_model_v1.dat.bz2 "c:\Program Files\7-Zip\7z.exe" x shape_predictor_5_face_landmarks.dat.bz2 "c:\Program Files\7-Zip\7z.exe" x shape_predictor_68_face_landmarks.dat.bz2 del mmod_human_face_detector.dat.bz2 del dlib_face_recognition_resnet_model_v1.dat.bz2 del shape_predictor_5_face_landmarks.dat.bz2 del shape_predictor_68_face_landmarks.dat.bz2
- Dlib の動作確認のため,次を実行.エラーメッセージが出ずに,顔検出の結果が表示されれば OK とする.
cd C:\dlib cd python_examples python cnn_face_detector.py mmod_human_face_detector.dat ..\examples\faces\2007_007763.jpg
ageitgey/ageitgey の face_recognition のインストール
- Windows で,コマンドプロンプトを管理者として実行
コマンドプロンプトを管理者として実行: 別ページ »で説明
- numpy, scikit-image, scikit-learn のインストール
次のコマンドを実行する.
python -m pip install -U numpy scikit-image scikit-learn
- face_recognition のインストール
cd /d c:%HOMEPATH% rmdir /s /q face_recognition git clone https://github.com/ageitgey/face_recognition cd face_recognition copy C:\dlib\python_examples\shape_predictor_68_face_landmarks.dat . python setup.py build python setup.py install
顔検出,顔ランドマーク,顔検証の Python プログラム
ファイルとディレクトリの準備
- Windows のコマンドプロンプトを開く
- 2つのディレクトリ known_people, unknown_pictures を作る
コマンドプロンプトで次のコマンドを実行
mkdir %HOMEPATH%\face_recognition\known_people mkdir %HOMEPATH%\face_recognition\unknown_pictures
- 顔画像の準備
%HOMEPATH%\face_recognition\examples にある顔画像のファイル 「biden.jpg」と「obama.jpg」を,先ほど作成した ディレクトリ known_people の下にコピー
copy %HOMEPATH%\face_recognition\examples\biden.jpg %HOMEPATH%\face_recognition\known_people copy %HOMEPATH%\face_recognition\examples\obama.jpg %HOMEPATH%\face_recognition\known_people
- Windows で、ディレクトリ known_people の下に 2つの画像ファイルがあることを確認
-
%HOMEPATH%\face_recognition\examples
にある顔画像のファイル
「two_people.jpg」を,先ほど作成した
ディレクトリ unknown_pictures の下にコピー
copy %HOMEPATH%\face_recognition\examples\two_people.jpg %HOMEPATH%\face_recognition\unknown_pictures
- Windows で、ディレクトリ unknown_pictures の下に画像ファイルがあることを確認
顔検出の Python プログラム
Python プログラムの実行
- Windows では python (Python ランチャーは py)
- Ubuntu では python3
Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.
Python のまとめ: 別ページ »にまとめ
python
「face_recognition/unknown_pictures」のところは、実際に作成したディレクトリに書き換えて実行すること.ディレクトリの切れ目に「\」でなく「/」を使うのは Python の流儀.
コマンドプロンプトで次を実行
cd /d c:%HOMEPATH% python
次の Python プログラムを実行
import face_recognition image = face_recognition.load_image_file("face_recognition/unknown_pictures/two_people.jpg") face_locations = face_recognition.face_locations(image, model="cnn") print(face_locations) exit()
顔検出と画像表示の Python プログラム
プログラムは、https://github.com/ageitgey/face_recognition/blob/master/examples/find_faces_in_picture.py のものを一部変更したものを掲載している
- Python プログラムファイルの作成
ここでは,ファイル名は a.py とする.
cd /d c:%HOMEPATH% cd face_recognition notepad a.py
ソースコードは次の通り.
「face_recognition/unknown_pictures」のところは、実際に作成したディレクトリに書き換えて実行すること.ディレクトリの切れ目に「\」でなく「/」を使うのは Python の流儀.
import face_recognition import PIL import cv2 F = "unknown_pictures/two_people.jpg" image = face_recognition.load_image_file(F) face_locations = face_recognition.face_locations(image, model="cnn") def box_label(bgr, x1, y1, x2, y2, label): cv2.rectangle(bgr, (x1, y1), (x2, y2), (255, 0, 0), 1, 1) cv2.rectangle(bgr, (int(x1), int(y1-25)), (x2, y1), (255,255,255), -1) cv2.putText(bgr, label, (x1, int(y1-5)), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0,0,0), 1) bgr = cv2.imread(F) for face_location in face_locations: top, right, bottom, left = face_location box_label(bgr, left, top, right, bottom, 'face') cv2.imshow('', bgr) cv2.waitKey(0) cv2.destroyAllWindows()
- Python プログラムの実行
python a.py
画像が表示されるので確認. このあと,ウインドウの右上の「x」をクリックしない.画面の中をクリックしてから,何かのキーを押して閉じる
顔ランドマークの Python プログラム
Python プログラムの実行
- Windows では python (Python ランチャーは py)
- Ubuntu では python3
Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.
Python のまとめ: 別ページ »にまとめ
python
chin, left_eyebrow, right_eyebrow, nose_bridge, left_eye, right_eye の情報が表示される
コマンドプロンプトで次を実行
cd /d c:%HOMEPATH% python
次の Python プログラムを実行
import face_recognition image = face_recognition.load_image_file("face_recognition/unknown_pictures/two_people.jpg") face_locations = face_recognition.face_locations(image, model="cnn") face_landmarks_list = face_recognition.face_landmarks(image, face_locations=face_locations) for i in face_landmarks_list: print(i) exit()
顔ランドマークと画像表示の Python プログラム
プログラムは、https://github.com/ageitgey/face_recognition/blob/master/examples/find_faces_in_picture.py のものを一部変更したものを掲載している
- Python プログラムファイルの作成
ここでは,ファイル名は a.py とする.
cd /d c:%HOMEPATH% cd face_recognition notepad a.py
ソースコードは次の通り.
「unknown_pictures」のところは、実際に作成したディレクトリに書き換えて実行すること.ディレクトリの切れ目に「\」でなく「/」を使うのは Python の流儀.
import face_recognition import PIL import cv2 F = "unknown_pictures/two_people.jpg" image = face_recognition.load_image_file(F) face_locations = face_recognition.face_locations(image, model="cnn") face_landmarks_list = face_recognition.face_landmarks(image, face_locations=face_locations) def box_label(bgr, x1, y1, x2, y2, label): cv2.rectangle(bgr, (x1, y1), (x2, y2), (255, 0, 0), 1, 1) cv2.rectangle(bgr, (int(x1), int(y1-25)), (x2, y1), (255,255,255), -1) cv2.putText(bgr, label, (x1, int(y1-5)), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0,0,0), 1) bgr = cv2.imread(F) for i in face_landmarks_list: for j in i.keys(): for k in (i[j]): cv2.circle(bgr, (k[0], k[1]), 2, (255, 0, 0), -1) cv2.imshow('', bgr) cv2.waitKey(0) cv2.destroyAllWindows()
- Python プログラムの実行
python a.py
画像が表示されるので確認. このあと,ウインドウの右上の「x」をクリックしない.画面の中をクリックしてから,何かのキーを押して閉じる
顔のランドマークの Python プログラムで、左目(lefteye)と左の眉(left_eyrbrow)を表示
Python プログラムの実行
- Windows では python (Python ランチャーは py)
- Ubuntu では python3
Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.
Python のまとめ: 別ページ »にまとめ
python
コマンドプロンプトで次を実行
cd /d c:%HOMEPATH% python
次の Python プログラムを実行
import face_recognition image = face_recognition.load_image_file("unknown_pictures/two_people.jpg") face_locations = face_recognition.face_locations(image, model="cnn") face_landmarks_list = face_recognition.face_landmarks(image, face_locations=face_locations) for i in face_landmarks_list: print(i['left_eye']) print(i['left_eyebrow']) exit()
左目(lefteye)と左の眉(left_eyrbrow)のランドマークについて画像表示
- Python プログラムファイルの作成
ここでは,ファイル名は a.py とする.
cd /d c:%HOMEPATH% cd face_recognition notepad a.py
ソースコードは次の通り.
プログラムは、https://github.com/ageitgey/face_recognition/blob/master/examples/find_faces_in_picture.py のものを一部変更したものを掲載している
「unknown_pictures」のところは、実際に作成したディレクトリに書き換えて実行すること.ディレクトリの切れ目に「\」でなく「/」を使うのは Python の流儀.
import face_recognition import PIL import cv2 F = "unknown_pictures/two_people.jpg" image = face_recognition.load_image_file(F) face_locations = face_recognition.face_locations(image, model="cnn") face_landmarks_list = face_recognition.face_landmarks(image, face_locations=face_locations) def box_label(bgr, x1, y1, x2, y2, label): cv2.rectangle(bgr, (x1, y1), (x2, y2), (255, 0, 0), 1, 1) cv2.rectangle(bgr, (int(x1), int(y1-25)), (x2, y1), (255,255,255), -1) cv2.putText(bgr, label, (x1, int(y1-5)), cv2.FONT_HERSHEY_COMPLEX, 0.7, (0,0,0), 1) bgr = cv2.imread(F) for i in face_landmarks_list: for j in i['left_eye']: cv2.circle(bgr, (j[0], j[1]), 2, (0, 255, 0), -1) for j in i['left_eyebrow']: cv2.circle(bgr, (j[0], j[1]), 2, (0, 0, 255), -1) cv2.imshow('', bgr) cv2.waitKey(0) cv2.destroyAllWindows()
- Python プログラムの実行
python a.py
画像が表示されるので確認. このあと,ウインドウの右上の「x」をクリックしない.画面の中をクリックしてから,何かのキーを押して閉じる
顔検証 (face verification) の Python プログラム
2つの顔画像が同一人物かを識別する Python プログラム
コマンドプロンプトで次を実行
cd /d c:%HOMEPATH% python
次の Python プログラムを実行
import face_recognition picture_of_obama = face_recognition.load_image_file("face_recognition/known_people/obama.jpg") obama_face_encoding = face_recognition.face_encodings(picture_of_obama)[0] biden_picture = face_recognition.load_image_file("face_recognition/known_people/biden.jpg") biden_face_encoding = face_recognition.face_encodings(biden_picture)[0] results = face_recognition.compare_faces([obama_face_encoding], biden_face_encoding) print(results) exit()
2つの顔画像が同一人物かを識別する Python プログラム(別の顔で動かす)
https://github.com/ageitgey/face_recognition に掲載の写真から切り取った、次の写真を使ってみる
-
コマンドプロンプトで次を実行
(ここでは、上の画像ファイルを、unknown_pictures の下に,104.png という名前で保存している)
cd /d c:%HOMEPATH% curl -O https://www.kkaneko.jp/ai/dlib/104.png copy 104.png face_recognition\unknown_pictures python
- 次の Python プログラムを実行
(今度は True と表示される)
import face_recognition picture_of_obama = face_recognition.load_image_file("face_recognition/known_people/obama.jpg") obama_face_encoding = face_recognition.face_encodings(picture_of_obama)[0] another_picture = face_recognition.load_image_file("face_recognition/unknown_pictures/104.png") another_face_encoding = face_recognition.face_encodings(another_picture)[0] results = face_recognition.compare_faces([obama_face_encoding], another_face_encoding) print(results) exit()