日本語対応のLLM,チャットボット(ELYZA-japanese-Llama-2-7b,transformer,Python,PyTorch を使用)(Windows 上)

前準備

Python のインストール(Windows上)

注:既にPython(バージョン3.12を推奨)がインストール済みの場合は,この手順は不要である.

winget(Windowsパッケージマネージャー)を使用してインストールを行う

  1. Windowsで,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
  2. winget(Windowsパッケージマネージャー)が利用可能か確認する:
    winget --version
    
  3. Pythonのインストール(下のコマンドにより Python 3.12 がインストールされる).
    winget install --scope machine Python.Launcher
    winget install --scope machine Python.Python.3.12
    
  4. 【関連する外部サイト】

    【サイト内の関連ページ】

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)または Visual Studio 2022 のインストール(Windows 上)

インストールの判断Build Tools for Visual Studio は,開発ツールセットである. Visual Studio は統合開発環境であり,いくつかの種類があり,Build Tools for Visual Studioの機能を含むか連携して使用するものである.インストールは以下の基準で判断してください:

不明な点がある場合は,Visual Studio 全体をインストール を行う方が良い.

Build Tools for Visual Studio 2022 のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)

    次のコマンドを実行

    次のコマンドは,Build Tools for Visual Studio 2022と VC2015 再配布可能パッケージをインストールするものである.

    winget install --scope machine Microsoft.VisualStudio.2022.BuildTools
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Build Tools for Visual Studio 2022 での C++ によるデスクトップ開発,CLI,ATL,MFC のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Build Tools 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をクリック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」,「ATL」,「MFC」をチェックする.その後,「変更」をクリック.

Visual Studio のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)

    次のコマンドを実行

    1. コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
    2. インストールコマンドの実行
      winget install Microsoft.VisualStudio.2022.Community --scope machine --override "--add Microsoft.VisualStudio.Workload.NativeDesktop Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core Microsoft.VisualStudio.Component.VC.CLI.Support Microsoft.VisualStudio.Component.CoreEditor Microsoft.VisualStudio.Component.NuGet Microsoft.VisualStudio.Component.Roslyn.Compiler Microsoft.VisualStudio.Component.TextTemplating Microsoft.VisualStudio.Component.Windows.SDK.Latest Microsoft.VisualStudio.Component.VC.Tools.x86.x64 Microsoft.VisualStudio.Component.VC.ATL Microsoft.VisualStudio.Component.VC.ATLMFC"
      winget install Microsoft.VisualStudio.2022.Community --scope machine Microsoft.VCRedist.2015+.x64
      

      インストールされるコンポーネントの説明:

      • NativeDesktop:C++によるデスクトップアプリケーション開発のためのワークロード一式
      • NativeDesktop.Core:C++デスクトップ開発に必要な基本コンポーネント群
      • VC.CLI.Support:マネージドコードとネイティブコードの統合開発を可能にするC++/CLIサポート
      • CoreEditor:コード編集,デバッグ,検索などの基本機能を提供するVisual Studioのコアエディタ
      • NuGet:.NETライブラリの依存関係を管理するパッケージ管理システム
      • Windows.SDK.Latest:Windows 向けアプリケーション開発用SDK(Software Development Kit)
      • VC.Tools.x86.x64:32ビット及び64ビット向けC++コンパイラとビルドツール
      • VC.ATL:Windowsコンポーネント開発用のActive Template Library
      • VC.ATLMFC:デスクトップアプリケーション開発用のMicrosoft Foundation Class Library

      システム要件と注意事項:

      • 管理者権限でのインストールが必須
      • 必要ディスク容量:10GB以上
      • 推奨メモリ:8GB以上のRAM
      • インストール過程でシステムの再起動が要求される可能性がある
      • 安定したインターネット接続環境が必要

      追加のコンポーネントが必要な場合は,Visual Studio Installerを使用して個別にインストールすることが可能である.

    3. インストール完了の確認
      winget list Microsoft.VisualStudio.2022.Community
      

      トラブルシューティング:

      インストール失敗時は,以下のログファイルを確認:

      %TEMP%\dd_setup_<timestamp>.log
      %TEMP%\dd_bootstrapper_<timestamp>.log
  2. Visual Studio での C++ によるデスクトップ開発,CLI のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Community 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をチェック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」をチェックする.その後,「インストール」をクリック.

PyTorch のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())"
    

    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).

    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())"
    

    サイト内の関連ページ

    関連する外部ページ

ELYZA-japanese-Llama-2-7b の実行(Windows 上)

transformers のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
  2. インストール
    python -m pip install -U transformers
    

ELYZA-japanese-Llama-2-7b の実行(Windows 上)

実行には、必要なメモリを備えたGPUが必要です。

  1. Windows で,コマンドプロンプトを実行
  2. エディタを起動
    cd /d c:%HOMEPATH%
    notepad elyza.py
    
  3. エディタで,次のプログラムを保存

    このプログラムは, 公式の GitHub のページ: https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7bで公開されていたものをそのまま使用している.

    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS = "<>\n", "\n<>\n\n"
    DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。"
    text = "クマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を書いてください。"
    
    model_name = "elyza/ELYZA-japanese-Llama-2-7b-instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
    
    if torch.cuda.is_available():
        model = model.to("cuda")
    
    prompt = "{bos_token}{b_inst} {system}{prompt} {e_inst} ".format(
        bos_token=tokenizer.bos_token,
        b_inst=B_INST,
        system=f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}",
        prompt=text,
        e_inst=E_INST,
    )
    
    
    with torch.no_grad():
        token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
        output_ids = model.generate(
            token_ids.to(model.device),
            max_new_tokens=256,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True)
    print(output)
    
  4. Python プログラムの実行

    Python プログラムの実行

    Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.

    Python のまとめ: 別ページ »にまとめ

    プログラムを elyza.pyのようなファイル名で保存したので, 「python elyza.py」のようなコマンドで行う.

    結果が出るまでしばらく待つ.

    python elyza.py
    
  5. 結果の確認

ELYZA-japanese-Llama-2-7b を用いて対話を行うプログラム

実行には、必要なメモリを備えたGPUが必要です。

  1. Windows で,コマンドプロンプトを実行
  2. エディタを起動
    cd /d c:%HOMEPATH%
    notepad elyza2.py
    
  3. エディタで,次のプログラムを保存

    このプログラムは, 公式の GitHub のページ: https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7bで公開されていたものを変更したもの.

    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer
    
    B_INST, E_INST = "[INST]", "[/INST]"
    B_SYS, E_SYS = "<>\n", "\n<>\n\n"
    DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。"
    
    model_name = "elyza/ELYZA-japanese-Llama-2-7b-instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
    
    if torch.cuda.is_available():
        model = model.to("cuda")
    
    while True:  # 無限ループで繰り返し
        text = input("プロンプトを入力してください(終了するには'quit'と入力): ")
    
        if text.lower() == 'quit':
            print("プログラムを終了します。")
            break
    
        prompt = "{bos_token}{b_inst} {system}{prompt} {e_inst} ".format(
            bos_token=tokenizer.bos_token,
            b_inst=B_INST,
            system=f"{B_SYS}{DEFAULT_SYSTEM_PROMPT}{E_SYS}",
            prompt=text,
            e_inst=E_INST,
        )
    
        with torch.no_grad():
            token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
            output_ids = model.generate(
                token_ids.to(model.device),
                max_new_tokens=256,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
            )
        output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True)
        print("生成されたテキスト:\n", output)
    
  4. Python プログラムの実行

    Python プログラムの実行

    Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.

    Python のまとめ: 別ページ »にまとめ

    プログラムを elyza2.pyのようなファイル名で保存したので, 「python elyza2.py」のようなコマンドで行う.

    結果が出るまでしばらく待つ.

    python elyza2.py
    
  5. 「プロンプトを入力してください(終了するには'quit'と入力):」と表示されるのを待つ.表示されたらプロンプトを入力.

    下にあるように,山口百恵についての質問などを行うと,簡単に,ハルシネーションを確認できる.