CRAFT のインストールと動作確認(テキスト検出)(Python,PyTorch を使用)(Windows 上)

CRAFT は,文字検出の一手法.

目次

  1. 前準備
  2. CRAFT のインストール,文字検出の実行

文献

Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee, Character Region Awareness for Text Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9365--9374, 2019.

関連する外部ページ

GitHub のページ: https://github.com/clovaai/CRAFT-pytorch

前準備

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)または Visual Studio 2022 のインストール(Windows 上)

インストールの判断Build Tools for Visual Studio は,開発ツールセットである. Visual Studio は統合開発環境であり,いくつかの種類があり,Build Tools for Visual Studioの機能を含むか連携して使用するものである.インストールは以下の基準で判断してください:

不明な点がある場合は,Visual Studio 全体をインストール を行う方が良い.

Build Tools for Visual Studio 2022 のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Build Tools for Visual Studio 2022と VC2015 再配布可能パッケージをインストールするものである.

    winget install --scope machine Microsoft.VisualStudio.2022.BuildTools 
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Build Tools for Visual Studio 2022 での C++ によるデスクトップ開発,CLI,ATL,MFC のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Build Tools 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をクリック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」,「ATL」,「MFC」をチェックする.その後,「変更」をクリック.

Visual Studio のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Visual Studio Community 2022と VC2015 再配布可能パッケージをインストールするものである.

    winget install --scope machine Microsoft.VisualStudio.2022.Community
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Visual Studio での C++ によるデスクトップ開発,CLI のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Community 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をチェック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」をチェックする.その後,「インストール」をクリック.

Python 3.10,Git のインストール(Windows 上)

Pythonは,プログラミング言語の1つ. Gitは,分散型のバージョン管理システム.

手順

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Python ランチャーとPython 3.10とGitをインストールし,Gitパスを通すものである.

    次のコマンドでインストールされるGitは 「git for Windows」と呼ばれるものであり, Git,MinGW などから構成されている.

    winget install --scope machine Python.Launcher
    winget install --scope machine Python.Python.3.10
    winget install --scope machine Git.Git
    powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\Git\cmd\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
    

関連する外部ページ

サイト内の関連ページ

関連項目Python, Git バージョン管理システム, Git の利用

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).

    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    サイト内の関連ページ

    関連する外部ページ

CRAFT のインストール,文字検出の実行

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. インストール
    pip install -U opencv-python scikit-image scipy
    cd /d c:%HOMEPATH%
    rmdir /s /q CRAFT-pytorch
    git clone --recursive https://github.com/clovaai/CRAFT-pytorch
    
  3. 公開されている学習済みモデルを確認

    https://github.com/clovaai/CRAFT-pytorch の「Test instruction using pretrained model」のところ

  4. 学習済みモデルのダウンロード

    General を選んでみる

  5. ダウンロードしたファイルは,%HOMEPATH%\CRAFT-pytorch に置く.
  6. 動作確認のために使用する画像ファイルの準備

    動作確認のために使用する画像ファイルは https://github.com/clovaai/deep-text-recognition-benchmark で公開されている画像ファイルを使うことにする.

    cd /d c:%HOMEPATH%
    rmdir /s /q deep-text-recognition-benchmark
    git clone --recursive https://github.com/clovaai/deep-text-recognition-benchmark
    
  7. 動作確認
    cd /d c:%HOMEPATH%
    cd CRAFT-pytorch
    python test.py --trained_model=craft_mlt_25k.pth --test_folder=%HOMEPATH%\deep-text-recognition-benchmark\demo_image
    
  8. %HOMEPATH%\CRAFT-pytorch\result の下に結果が保存される.