MMDetection,MMFewShot のインストールと動作確認(画像分類,物体検出)(PyTorch,Python を使用)(Windows 上)

MMClassification は, OpenMMLab の構成物で, Few Shot Classification, Few Shot Detection の機能を提供する.

目次

  1. 前準備
  2. MMDetection, MMFewShot のインストール(Windows 上)
  3. MMFewShot を用いた物体検出の実行(Windows 上)

文献

mmfewshot Contributors, OpenMMLab Few Shot Learning Toolbox and Benchmark, https://github.com/open-mmlab/mmfewshot, 2021.

関連する外部ページ

前準備

Visual Studio 2022 Build Toolsとランタイムのインストール

管理者権限でコマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)し、以下を実行する。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要である。


REM Visual Studio 2022 Build Toolsとランタイムのインストール
winget install --scope machine Microsoft.VisualStudio.2022.BuildTools Microsoft.VCRedist.2015+.x64
set VS_INSTALLER="C:\Program Files (x86)\Microsoft Visual Studio\Installer\setup.exe"
set VS_PATH="C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools"
REM C++開発ワークロードのインストール
%VS_INSTALLER% modify --installPath %VS_PATH% ^
--add Microsoft.VisualStudio.Workload.VCTools ^
--add Microsoft.VisualStudio.Component.VC.Tools.x86.x64 ^
--add Microsoft.VisualStudio.Component.Windows11SDK.22621 ^
--includeRecommended --quiet --norestart

Python 3.7 のインストール(Windows 上)

Pythonは,プログラミング言語の1つ.

手順

  1. Windows で,管理者権限コマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)。

    次のコマンドを実行

    winget install --scope machine Python.Python.3.7
    

AI エディタ Windsurf のインストール

Pythonプログラムの編集・実行には、AI エディタの利用を推奨する。ここでは,Windsurfのインストールを説明する。

管理者権限でコマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)し、以下を実行して、Windsurfをシステム全体にインストールする。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要となる。

winget install --scope machine Codeium.Windsurf -e --silent

関連する外部ページ

Windsurf の公式ページ: https://windsurf.com/

Gitのインストール

管理者権限でコマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)し、以下を実行する。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要となる。


REM Git をシステム領域にインストール
winget install --scope machine --id Git.Git -e --silent
REM Git のパス設定
set "GIT_PATH=C:\Program Files\Git\cmd"
if exist "%GIT_PATH%" (
    echo "%PATH%" | find /i "%GIT_PATH%" >nul
    if errorlevel 1 setx PATH "%PATH%;%GIT_PATH%" /M >nul
)

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. Windows で,管理者権限コマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)。
  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())"
    

    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).

    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())"
    

    サイト内の関連ページ

    関連する外部ページ

MMDetection, MMFewShot のインストール(Windows 上)

インストールの方法は複数ある. ここでは, NVIDIA CUDA ツールキットを使うことも考え, インストールしやすい方法として,ソースコードからビルドしてインストールする方法を案内している.

  1. Windows で,管理者権限コマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)。
  2. PyTorch がインストールできていることを確認するために,PyTorch のバージョンを表示
    python -c "import torch; TORCH_VERSION = '.'.join(torch.__version__.split('.')[:2]); print(TORCH_VERSION)"
    
  3. PyTorch が NVIDIA CUDA ツールキットを認識できていることを確認するために, PyTorch が認識しているNVIDIA CUDA ツールキット のバージョンを表示

    このとき,実際には 11.8 をインストールしているのに,「cu117」のように古いバージョンが表示されることがある.このような場合は,気にせずに続行する.

    python -c "import torch; CUDA_VERSION = torch.__version__.split('+')[-1]; print(CUDA_VERSION)"
    
  4. MIM,MMDetection のインストール

    インストール手順は, https://mmdetection.readthedocs.io/en/latest/get_started.html による.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y openmim mmcv mmcv-full opencv-python opencv-python-headless
    python -m pip install -U openmim opencv-python
    cd /d c:%HOMEPATH%
    rmdir /s /q mmdetection
    git clone https://github.com/open-mmlab/mmdetection.git
    cd mmdetection
    mim uninstall -y mmdet
    pip install -r requirements.txt
    mim install -e .
    mim list
    

    (途中省略)
  5. MMFewShot のインストール

    Python 3.7 もしくは 3.8 が必要である(2023年4月時点)

    cd /d c:%HOMEPATH%
    rmdir /s /q mmfewshot
    git clone https://github.com/open-mmlab/mmfewshot.git
    cd mmfewshot
    mim uninstall -y mmfewshot
    pip install -r requirements.txt
    mim install -e .
    mim list
    

    (省略)

MMFewShot を用いた物体検出の実行(Windows 上)

セマンティック・セグメンテーション(ImageNet-1k, ResNet50 を使用)

  1. Windows で,管理者権限コマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)。
  2. 事前学習済みモデルのダウンロード

    次のコマンドを実行する.

    cd /d c:%HOMEPATH%\mmfewshot
    mkdir checkpoints
    cd checkpoints
    curl -O https://download.openmmlab.com/mmfewshot/detection/attention_rpn/coco/attention-rpn_r50_c4_4xb2_coco_base-training_20211102_003348-da28cdfd.pth
    
  3. セマンティック・セグメンテーションを行う Python プログラム

    次の Python プログラムを実行する.Matplotlib を使うので,Jupyter QtConsoleJupyter ノートブック (Jupyter Notebook) の利用が便利である.

    下のプログラムは作成途中(動作未確認)

    import os
    from mmfewshot.detection.apis import (inference_detector, init_detector, process_support_images)
    
    os.chdir((os.getenv('HOMEPATH') + '\\' + 'mmfewshow'))
    config_file = 'configs/detection/attention_rpn/coco/attention-rpn_r50_c4_4xb2_coco_base-training.py'
    checkpoint_file = 'checkpoints/attention-rpn_r50_c4_4xb2_coco_base-training_20211102_003348-da28cdfd.pth'
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = init_detector(config_file,checkpoint_file, device=device)
    
    fsupport_images_dir = 'demo/demo_detection_images/support_images'
    files = os.listdir(fsupport_images_dir)
    support_images = [
        os.path.join(fsupport_images_dir, file) for file in files
    ]
    classes = [file.split('.')[0] for file in files]
    support_labels = [[file.split('.')[0]] for file in files]
    print("support_images")
    display(support_images)
    print("classes")
    display(classes)
    print("support_labels")
    display(support_labels)
    process_support_images(model, support_images, support_labels, classes=classes)
    
    # single image
    img = 'demo/demo_detection_images/query_images/demo_query.jpg'
    fscore_thr = 0.3
    
    # https://mmdetection.readthedocs.io/en/v3.0.0/user_guides/inference.html
    from mmdet.registry import VISUALIZERS
    visualizer = VISUALIZERS.build(model.cfg.visualizer)
    visualizer.dataset_meta = model.dataset_meta
    
    result = inference_detector(model, img)
    image = mmcv.imconvert(mmcv.imread(img), 'bgr', 'rgb')
    visualizer.add_datasample('result', image, data_sample=result, show=False, draw_gt=False)
    mmcv.imshow(visualizer.get_image())