PyTorch Geometric Temporal のインストールと動作確認(予測)(Python,PyTorch を使用)(Windows 上)

PyTorch Geometric Temporalのインストールと動作確認を行う.

目次

  1. 前準備
  2. PyTorch Geometric Temporal のインストール(Windows 上)
  3. 動作確認

PyTorch Geometric Temporal

文献

Benedek Rozemberczki and Paul Scherer and Yixuan He and George Panagopoulos and Alexander Riedel and Maria Astefanoaei and Oliver Kiss and Ferenc Beres and Guzman Lopez and Nicolas Collignon and Rik Sarkar, PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models, Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 4564-4573, 2021.

関連する外部ページ

前準備

Build Tools for Visual Studio 2022 のインストール(Windows 上)

Build Tools for Visual Studio は,Visual Studio の IDE を含まない C/C++ コンパイラ,ライブラリ,ビルドツール等のコマンドライン向け開発ツールセットである。

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。

REM VC++ ランタイム
winget install --scope machine --accept-source-agreements --accept-package-agreements --silent --id Microsoft.VCRedist.2015+.x64

REM Build Tools + Desktop development with C++(VCTools)+ 追加コンポーネント(一括)
winget install --id Microsoft.VisualStudio.2022.BuildTools ^
  --override "--passive --wait --add Microsoft.VisualStudio.Workload.VCTools --includeRecommended --add Microsoft.VisualStudio.Component.VC.Llvm.Clang --add Microsoft.VisualStudio.ComponentGroup.ClangCL --add Microsoft.VisualStudio.Component.VC.CMake.Project --add Microsoft.VisualStudio.Component.Windows11SDK.26100"

--add で追加されるコンポーネント

上記のコマンドでは,まず Build Tools 本体と Visual C++ 再頒布可能パッケージをインストールし,次に setup.exe を用いて以下のコンポーネントを追加している。

インストール完了の確認

winget list Microsoft.VisualStudio.2022.BuildTools

上記以外の追加のコンポーネントが必要になった場合は Visual Studio Installer で個別にインストールできる。

Visual Studio の機能を必要とする場合は、追加インストールできる。

Python 3.12 のインストール(Windows 上) [クリックして展開]

以下のいずれかの方法で Python 3.12 をインストールする。Python がインストール済みの場合、この手順は不要である。

方法1:winget によるインストール

管理者権限コマンドプロンプトで以下を実行する。管理者権限のコマンドプロンプトを起動するには、Windows キーまたはスタートメニューから「cmd」と入力し、表示された「コマンドプロンプト」を右クリックして「管理者として実行」を選択する。

winget install -e --id Python.Python.3.12 --scope machine --silent --accept-source-agreements --accept-package-agreements --override "/quiet InstallAllUsers=1 PrependPath=1 AssociateFiles=1 InstallLauncherAllUsers=1"

--scope machine を指定することで、システム全体(全ユーザー向け)にインストールされる。このオプションの実行には管理者権限が必要である。インストール完了後、コマンドプロンプトを再起動すると PATH が自動的に設定される。

方法2:インストーラーによるインストール

  1. Python 公式サイト(https://www.python.org/downloads/)にアクセスし、「Download Python 3.x.x」ボタンから Windows 用インストーラーをダウンロードする。
  2. ダウンロードしたインストーラーを実行する。
  3. 初期画面の下部に表示される「Add python.exe to PATH」に必ずチェックを入れてから「Customize installation」を選択する。このチェックを入れ忘れると、コマンドプロンプトから python コマンドを実行できない。
  4. 「Install Python 3.xx for all users」にチェックを入れ、「Install」をクリックする。

インストールの確認

コマンドプロンプトで以下を実行する。

python --version

バージョン番号(例:Python 3.12.x)が表示されればインストール成功である。「'python' は、内部コマンドまたは外部コマンドとして認識されていません。」と表示される場合は、インストールが正常に完了していない。

Git のインストール

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要となる。

REM Git をシステム領域にインストール
winget install --scope machine --id Git.Git -e --silent --accept-source-agreements --accept-package-agreements
REM Git のパス設定
set "GIT_PATH=C:\Program Files\Git\cmd"
for /f "skip=2 tokens=2*" %a in ('reg query "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v Path') do set "SYSTEM_PATH=%b"
if exist "%GIT_PATH%" (
    echo "%SYSTEM_PATH%" | find /i "%GIT_PATH%" >nul
    if errorlevel 1 setx PATH "%GIT_PATH%;%SYSTEM_PATH%" /M >nul
)

関連する外部ページ

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    
    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).
    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    サイト内の関連ページ

    関連する外部ページ

PyTorch Geometric Temporal のインストール(Windows 上)

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. インストール
    python -m pip install torch-geometric-temporal
    
  3. インストール終了の確認

    エラーメッセージが出ていないこと

  4. インストール後のテスト

    エラーメッセージが出ていないこと

    cd /d c:%HOMEPATH%
    rmdir /s /q pytorch_geometric_temporal
    git clone https://github.com/benedekrozemberczki/pytorch_geometric_temporal
    cd pytorch_geometric_temporal
    python -m pytest test
    

動作確認

次のページに記載のプログラムを実行.

https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#epidemiological-forecasting

from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
from torch_geometric_temporal.signal import temporal_signal_split

loader = ChickenpoxDatasetLoader()

dataset = loader.get_dataset()

train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.2)

import torch
import torch.nn.functional as F
from torch_geometric_temporal.nn.recurrent import DCRNN

class RecurrentGCN(torch.nn.Module):
    def __init__(self, node_features):
        super(RecurrentGCN, self).__init__()
        self.recurrent = DCRNN(node_features, 32, 1)
        self.linear = torch.nn.Linear(32, 1)

    def forward(self, x, edge_index, edge_weight):
        h = self.recurrent(x, edge_index, edge_weight)
        h = F.relu(h)
        h = self.linear(h)
        return h

from tqdm import tqdm

model = RecurrentGCN(node_features = 4)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

model.train()

for epoch in tqdm(range(200)):
    cost = 0
    for time, snapshot in enumerate(train_dataset):
        y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
    cost = cost / (time+1)
    cost.backward()
    optimizer.step()
    optimizer.zero_grad()

model.eval()
cost = 0
for time, snapshot in enumerate(test_dataset):
    y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    print(time, y_hat, snapshot.y)

cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))