【インストールの判断】 Build Tools for Visual Studio は,開発ツールセットである. Visual Studio は統合開発環境であり,いくつかの種類があり,Build Tools for Visual Studioの機能を含むか連携して使用するものである.インストールは以下の基準で判断してください:
Visual Studio 2022 をインストールする際に,「C++ によるデスクトップ開発」を選択することで, Build Tools for Visual Studio 2022 の機能も一緒にインストールされる.
不明な点がある場合は,Visual Studio 全体をインストール を行う方が良い.
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行
次のコマンドは,Build Tools for Visual Studio 2022と VC2015 再配布可能パッケージをインストールするものである.
起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行
次のコマンドは,Visual Studio Community 2022と VC2015 再配布可能パッケージをインストールするものである.
起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.
Pythonは,プログラミング言語の1つ. Gitは,分散型のバージョン管理システム.
【手順】
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行
次のコマンドは,Python ランチャーとPython 3.10とGitをインストールし,Gitにパスを通すものである.
次のコマンドでインストールされるGitは 「git for Windows」と呼ばれるものであり, Git,MinGW などから構成されている.
winget install --scope machine Python.Launcher winget install --scope machine Python.Python.3.10 winget install --scope machine Git.Git powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\Git\cmd\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
【関連する外部ページ】
【サイト内の関連ページ】
【関連項目】 Python, Git バージョン管理システム, Git の利用
【サイト内の関連ページ】 NVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバ, NVIDIA CUDA ツールキット, NVIDIA cuDNN のインストールを行う.
【関連する外部ページ】
コマンドプロンプトを管理者として実行: 別ページ »で説明
次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.
事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).
PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.
python -m pip install -U --ignore-installed pip python -m pip uninstall -y torch torchvision torchaudio torchtext xformers python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118 python -c "import torch; print(torch.__version__, torch.cuda.is_available())"
Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt) を管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).
conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia py -c "import torch; print(torch.__version__, torch.cuda.is_available())"
【サイト内の関連ページ】
【関連する外部ページ】
Windows での FFmpeg のインストール(Windows 上): 別ページ »で説明
コマンドプロンプトを管理者として実行: 別ページ »で説明
cd /d c:%HOMEPATH% rmdir /s /q Track-Anything git clone https://github.com/gaomingqi/Track-Anything cd Track-Anything python -m pip install -U pip python -m pip uninstall -y tensorflow tensorflow-cpu tensorflow-gpu tensorflow-intel python -m pip install -U tensorflow==2.10.1 keras onnx protobuf python -m pip install -r requirements.txt
cd /d c:%HOMEPATH%\Track-Anything notepad app.py
変更前: args.device = "cuda:3"
変更後: args.device = "cuda:0"
変更の結果,次のようになる.
初回起動時は,ファイルのダウンロード,MMCV とMMEngine のインストールが行われる. 起動するまで少し時間がかかる.
cd /d c:%HOMEPATH%\Track-Anything python app.py --device cuda:0
メモリに余裕がないときは,メモリを節約できる次のオプションを検討する
cd /d c:%HOMEPATH%\Track-Anything python app.py --device cuda:0 --sam_model_type vit_b
表示が出なくても問題ない.
結果が表示されるまで待つ.
これは,トラッキングしたいオブジェクトを選ぶ操作である.
クリックは複数回行うことができる.
「Clear clicks」でやり直すことができる.
結果が表示されるまで待つ.
結果を保存した動画ファイル:trackanything.mp4