PyTorch, Caffe2 最新版のインストール.CUDA対応可(ソースコードを使用)(Windows 上)

Windows で,PyTorch, Caffe2 最新版をソースコードからビルドして,インストールする.

PyTorch, Caffe2 のインストールは,複数の方法がある.

目次

PyTorch など、インストールするソフトウェアの利用条件などは、利用者が確認すること。

謝辞:このWebページで紹介する PyTorch ソフトウェア及びその他のソフトウェアの作者に感謝します

前準備

Python のインストール(Windows上)

注:既にPython(バージョン3.12を推奨)がインストール済みの場合は,この手順は不要である.

winget(Windowsパッケージマネージャー)を使用してインストールを行う

  1. Windowsで,コマンドプロンプト管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
  2. winget(Windowsパッケージマネージャー)が利用可能か確認する:
    winget --version
    
  3. Pythonのインストール(下のコマンドにより Python 3.12 がインストールされる).
    winget install --scope machine Python.Launcher
    winget install --scope machine Python.Python.3.12
    
  4. 【関連する外部サイト】

    【サイト内の関連ページ】

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)または Visual Studio 2022 のインストール(Windows 上)

CUDAツールキットは、GPU上でコードをコンパイルするためにC++コンパイラを必要とします。そのため、事前にMicrosoft C++ Build Tools または Visual Studio (C++開発ワークロードを含む) をインストールしておく必要があります。

インストールの判断Build Tools for Visual Studio は,C++コンパイラなどを含む開発ツールセットです. Visual Studio は統合開発環境であり,いくつかのエディションがあり,Build Tools for Visual Studioの機能を含むか連携して使用します.インストールは以下の基準で判断してください:

不明な点がある場合は,Visual Studio 全体をインストール する方が、後で機能を追加する手間が省ける場合があります.

Build Tools for Visual Studio 2022 のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動します(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)。

    以下のwingetコマンドを実行します。wingetはWindows標準のパッケージマネージャーです。

    --scope machine オプションはシステム全体にインストールすることを意味します。

    次のコマンドは,Build Tools for Visual Studio 2022と、多くのプログラムで必要とされるVC++ 2015以降の再頒布可能パッケージをインストールします.

    winget install --scope machine Microsoft.VisualStudio.2022.BuildTools
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Build Tools for Visual Studio 2022 で C++ によるデスクトップ開発関連コンポーネントのインストール

    CUDA開発には、標準のC++開発ツールに加えて、特定のコンポーネントが必要になる場合があります。

    1. Visual Studio Installer を起動します。

      起動方法: スタートメニューから「Visual Studio Installer」を探して実行します.

    2. Visual Studio Build Tools 2022 の項目で「変更」ボタンをクリックします.
    3. 「ワークロード」タブで「C++ によるデスクトップ開発」をクリックして選択します。画面右側の「インストールの詳細」で、必要に応じて「v143 ビルドツール用 C++/CLI サポート(最新)」、「ATL」、「MFC」などをチェックします(これらは一般的なC++開発や特定のプロジェクトタイプで必要になる場合があります)。その後、「変更」をクリックしてインストールまたは変更を適用します.

Visual Studio Community 2022 のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者権限で起動します。
  2. インストールコマンドの実行

    以下のwingetコマンドを実行します。--override "--add ..." 部分で、インストールするワークロードやコンポーネントを指定しています。

    winget install Microsoft.VisualStudio.2022.Community --scope machine --override "--add Microsoft.VisualStudio.Workload.NativeDesktop Microsoft.VisualStudio.ComponentGroup.NativeDesktop.Core Microsoft.VisualStudio.Component.VC.CLI.Support Microsoft.VisualStudio.Component.CoreEditor Microsoft.VisualStudio.Component.NuGet Microsoft.VisualStudio.Component.Roslyn.Compiler Microsoft.VisualStudio.Component.TextTemplating Microsoft.VisualStudio.Component.Windows.SDK.Latest Microsoft.VisualStudio.Component.VC.Tools.x86.x64 Microsoft.VisualStudio.Component.VC.ATL Microsoft.VisualStudio.Component.VC.ATLMFC"
    winget install Microsoft.VisualStudio.2022.Community --scope machine Microsoft.VCRedist.2015+.x64
    

    インストールされる主要なコンポーネントの説明:

    • NativeDesktop (C++によるデスクトップ開発): CUDA開発に必要なC++コンパイラ(VC.Tools.x86.x64)やWindows SDK (Windows.SDK.Latest)など、基本的な開発ツール一式を含みます。
    • CoreEditor: Visual Studioの基本的なコードエディタ機能を提供します。
    • VC.CLI.Support: C++/CLIを用いた開発サポート(通常、純粋なCUDA C++開発では不要な場合もあります)。
    • NuGet: .NETライブラリ管理用(C++プロジェクトでも利用されることがあります)。
    • VC.ATL / VC.ATLMFC: 特定のWindowsアプリケーション開発フレームワーク(通常、CUDA開発自体には直接必要ありません)。

    システム要件と注意事項:

    • 管理者権限でのインストールが必須です。
    • 必要ディスク容量:10GB以上(選択するコンポーネントにより変動)。
    • 推奨メモリ:8GB以上のRAM。
    • インストール過程でシステムの再起動が要求される可能性があります。
    • 安定したインターネット接続環境が必要です。

    後から追加のコンポーネントが必要になった場合は,Visual Studio Installerを使用して個別にインストールすることが可能です.

  3. インストール完了の確認

    インストールが成功したか確認するには、管理者権限のコマンドプロンプトで以下のコマンドを実行します。

    winget list Microsoft.VisualStudio.2022.Community
    

    リストに表示されればインストールされています。

    トラブルシューティング:

    インストール失敗時は,以下のログファイルを確認すると原因究明の手がかりになります:

    %TEMP%\dd_setup_.log
    %TEMP%\dd_bootstrapper_.log

    ( は実行日時に対応する文字列)

  4. (オプション) Visual Studio Installer での確認と変更

    wingetでのインストール後も、Visual Studio Installerを使ってインストール内容を確認・変更できます。

    1. Visual Studio Installer を起動します。
    2. Visual Studio Community 2022 の項目で「変更」をクリックします。
    3. 「ワークロード」タブで「C++ によるデスクトップ開発」がチェックされていることを確認します。必要であれば、「個別のコンポーネント」タブで特定のツール(例: 特定バージョンのMSVCコンパイラ、CMakeツールなど)を追加・削除できます。「インストールの詳細」で「v143 ビルドツール用 C++/CLI サポート(最新)」などが選択されているかも確認できます。変更後、「変更」または「インストール」をクリックします。

Git のインストール(Windows 上)

Gitは,バージョン管理システム.ソースコードの管理や複数人での共同に役立つ.

サイト内の関連ページWindows での Git のインストール: 別ページ »で説明

関連する外部ページGit の公式ページ: https://git-scm.com/

CMake のインストール

CMake の公式ダウンロードページ: https://cmake.org/download/

NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.4 のインストール

GPU は,グラフィックス・プロセッシング・ユニットの略で、コンピュータグラフィックス関連の機能,乗算や加算の並列処理の機能などがある.

NVIDIA CUDA は,NVIDIA社が提供している GPU 用のツールキットである.GPU を用いた演算のプログラム作成や動作のための各種機能を備えている.ディープラーニングでも利用されている.

関連 Web ページ

インストール手順の説明

Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.5NVIDIA cuDNN v8.3 のインストール: 別ページ »で説明

PyTorch, Caffe2 最新版のインストール.CUDA対応可(ソースコードを使用)(Windows 上)

  1. Visual Studio の x64 Native Tools コマンドプロンプト管理者として実行

    起動は,Windows のメニューで「Visual Studio 20..」の下の「x64 Native Tools コマンドプロンプト (x64 Native Tools Command Prompt)」を選ぶ.「x64」は,64ビット版の意味である.

    「x64 Native Tools コマンドプロンプト (x64 Native Tools Command Prompt)」がないとき:

    C++ ビルドツール (Build Tools) のインストールを行うことで, 「x64 Native Tools コマンドプロンプト (x64 Native Tools Command Prompt)」がインストールされる.その手順は,別ページ »で説明

  2. pytorch の作業ディレクトリとインストールディレクトリを削除する
    cd c:\
    rmdir /s /q pytorch
    
  3. pytorch のソースコードをダウンロード

    同時にサードパーティソフトウェア(ideep, eigen, pybind11, mkl-dnn など多数)もダウンロードが始まる。これらの利用条件は、利用者が確認すること

    しばらく待つ

    cd c:\
    git clone --recursive https://github.com/pytorch/pytorch
    

    (以下省略)
  4. numpy pyyaml ninja pillow six のインストール
    これらは,ビルドで使用される.

    *py -m pip install ...」は,Python パッケージをインストールするためのコマンド.

    python -m pip install numpy pyyaml ninja pillow six
    
  5. ONNX のインストール

    別ページ »で説明

  6. cmake を用いて,ソースコードからビルドし、インストールする

    -DUSE_BREAKPAD=OFF」は,これを付けない場合,私のパソコンではエラーメッセージが出たので付けている.各自で試してほしい.
    しばらく時間がかかる.

    cd c:\
    cd pytorch
    cmake -G "Visual Studio 16 2019" -A x64 -T host=x64 -DUSE_BREAKPAD=OFF -DOpenMP_CXX_FLAGS='/openmp' .
    cmake --build . --config RELEASE
    cmake --build . --config RELEASE --target INSTALL -- /m:4
    
  7. 実行結果の確認
  8. Python パッケージ PyTorch のビルドとインストール
    cd c:\
    cd pytorch
    del CMakeCache.txt
    rmdir /s /q CMakeFiles\
    python setup.py build
    python setup.py install
    
  9. Windowsシステム環境変数 CAFFE_ROOT の設定
  10. Python でPyTorch のバージョン確認と,PyTorch から NVIDIA CUDA ツールキット が利用可能かの確認

    Windows で,コマンドプロンプトを開き,次を実行.

    python -c "import torch; print(torch.__version__, torch.cuda.is_available())"
    
  11. Python でcaffe のバージョン確認
    python -c "import caffe; print( caffe.__version__ )"
    
  12. 動作確認 https://pytorch.org/get-started/locally/ に記載の Python プログラムを動かしてみる

    Python プログラムを実行する

    PyTorch を使用して,5行3列のランダムな値を持つテンソル (多次元配列) を作成し,それを表示するプログラム.

    import torch
    x = torch.rand(5, 3)
    print(x)
    

    結果が表示されることを確認。乱数を使っているので、値は、実行のたびに変化する