MNIST データセット(Python を使用)

MNIST データセットを紹介する. 利用条件は利用者で確認すること.

目次

  1. Google Colab へのリンク
  2. 前準備
  3. MNIST データセットのロード
  4. MNIST データセットの確認
  5. MNIST データセットのデータフレームへの変換

* MNIST データセット

MNIST データセットは,公開されているデータセット(オープンデータ)である.

0 から 9 までの 10 種類の手書き文字についての, モノクロ画像と,各画像に付いた「0から9までの数値」のラベルから構成されるデータセットである.

文献

Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, vol. 86, no. 11, pp. 2278-2324, 1998.

サイト内の関連ページ

関連する外部ページ

1. Google Colab へのリンク

Google Colaboratory のページ:

次のリンクをクリックすると,Google Colaboratoryノートブックが開く. そして,Google アカウントでログインすると,Google Colaboratory のノートブック内のコード等を編集したり再実行したりができる.編集した場合でも,他の人に影響が出たりということはない.そして,編集後のものを,各自の Google ドライブ内に保存することもできる.

https://colab.research.google.com/drive/1awZ1ex4KbAJ6hw4VfjKwE-kuiNVVHrfJ?usp=sharing

2. 前準備

Python 3.12 のインストール

以下のいずれかの方法で Python 3.12 をインストールする。

方法1:winget によるインストール

Python がインストール済みの場合、この手順は不要である。管理者権限コマンドプロンプトで以下を実行する。管理者権限のコマンドプロンプトを起動するには、Windows キーまたはスタートメニューから「cmd」と入力し、表示された「コマンドプロンプト」を右クリックして「管理者として実行」を選択する。

winget install -e --id Python.Python.3.12 --scope machine --silent --accept-source-agreements --accept-package-agreements --override "/quiet InstallAllUsers=1 PrependPath=1 AssociateFiles=1 InstallLauncherAllUsers=1"

--scope machine を指定することで、システム全体(全ユーザー向け)にインストールされる。このオプションの実行には管理者権限が必要である。インストール完了後、コマンドプロンプトを再起動すると PATH が自動的に設定される。

方法2:インストーラーによるインストール

  1. Python 公式サイト(https://www.python.org/downloads/)にアクセスし、「Download Python 3.x.x」ボタンから Windows 用インストーラーをダウンロードする。
  2. ダウンロードしたインストーラーを実行する。
  3. 初期画面の下部に表示される「Add python.exe to PATH」に必ずチェックを入れてから「Customize installation」を選択する。このチェックを入れ忘れると、コマンドプロンプトから python コマンドを実行できない。
  4. 「Install Python 3.xx for all users」にチェックを入れ、「Install」をクリックする。

インストールの確認

コマンドプロンプトで以下を実行する。

python --version

バージョン番号(例:Python 3.12.x)が表示されればインストール成功である。「'python' は、内部コマンドまたは外部コマンドとして認識されていません。」と表示される場合は、インストールが正常に完了していない。

AIエディタ Windsurf のインストール

Pythonプログラムの編集・実行には、AIエディタの利用を推奨する。ここでは、Windsurfのインストールを説明する。

Windsurf がインストール済みの場合、この手順は不要である。管理者権限コマンドプロンプトで以下を実行する。管理者権限のコマンドプロンプトを起動するには、Windows キーまたはスタートメニューから「cmd」と入力し、表示された「コマンドプロンプト」を右クリックして「管理者として実行」を選択する。

winget install -e --id Codeium.Windsurf --scope machine --accept-source-agreements --accept-package-agreements --override "/VERYSILENT /NORESTART /MERGETASKS=!runcode,addtopath,associatewithfiles,!desktopicon"
powershell -Command "$env:Path=[System.Environment]::GetEnvironmentVariable('Path','Machine')+';'+[System.Environment]::GetEnvironmentVariable('Path','User'); windsurf --install-extension MS-CEINTL.vscode-language-pack-ja --force; windsurf --install-extension ms-python.python --force"

--scope machine を指定することで、システム全体(全ユーザー向け)にインストールされる。このオプションの実行には管理者権限が必要である。インストール完了後、コマンドプロンプトを再起動すると PATH が自動的に設定される。

関連する外部ページ

Windsurf の公式ページ: https://windsurf.com/

TensorFlow, TensorFlow データセット, Keras, numpy, matplotlib のインストール

Windows の場合

Windows では,コマンドプロンプトを管理者として実行し, 次のコマンドを実行する.

Windowspip を実行するときは,管理者権限コマンドプロンプトを使用し,システム領域へのインストールを行う.
python -m pip install -U tensorflow-gpu tensorflow_datasets keras numpy matplotlib
Windows での TensorFlow のインストールの詳細: 別ページ »で説明

(このページで,Build Tools for Visual Studio 2022,NVIDIA ドライバ, NVIDIA CUDA ツールキットNVIDIA cuDNNのインストールも説明している.)

Ubuntu の場合

Ubuntu では,次のコマンドを実行.

# パッケージリストの情報を更新
sudo apt update
sudo apt -y install python3-numpy python3-matplotlib
sudo pip3 install -U tensorflow-gpu tensorflow_datasets keras
Ubuntu での TensorFlow のインストールの詳細: 別ページ »で説明

(このページで,NVIDIA ドライバ, NVIDIA CUDA ツールキットNVIDIA cuDNNのインストールも説明している.)

3. MNIST データセットのロード

【Python の利用】

Python は,次のコマンドで起動できる.

Python 開発環境(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder, PyCharm, PyScripterなど)も便利である.

Python のまとめ: 別ページ »にまとめ

  1. 以下の操作をコマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 →「コマンドプロンプト」を選択)。

  2. jupyter qtconsole の起動

    これ以降の操作は,jupyter qtconsole で行う.

    jupyter qtconsole
    
    Python 開発環境として,Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, spyder のインストール

    Windows で,管理者権限コマンドプロンプトを起動(手順:Windowsキーまたはスタートメニュー > cmd と入力 > 右クリック > 「管理者として実行」)。し,次のコマンドを実行する.

    次のコマンドを実行することにより,pipとsetuptoolsを更新する,Jupyter Notebook,PyQt5、Spyderなどの主要なPython環境がインストールされる.

    python -m pip install -U pip setuptools requests notebook==6.5.7 jupyterlab jupyter jupyter-console jupytext PyQt5 nteract_on_jupyter spyder
    
  3. パッケージのインポート,TensorFlow のバージョン確認など
    import tensorflow as tf
    import numpy as np
    import tensorflow_datasets as tfds
    
    %matplotlib inline
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings
    
  4. TensorFlow データセット から MNIST データセット をロード
    • x_train: サイズ 28 × 28 の 60000枚の濃淡画像
    • y_train: 60000枚の濃淡画像それぞれの,種類番号(0 から 9 のどれか)
    • x_test: サイズ 28 × 28 の 10000枚の濃淡画像
    • y_test: 10000枚の濃淡画像それぞれの,種類番号(0 から 9 のどれか)

    結果は,TensorFlow の Tensor である.

    type は型,shape はサイズ,np.max と np.mi は最大値と最小値.

    tensorflow_datasets の loadで, 「batch_size = -1」を指定して,一括読み込みを行っている.

    mnist, mnist_metadata = tfds.load('mnist', with_info = True, shuffle_files=True, as_supervised=True, batch_size = -1)
    x_train, y_train, x_test, y_test = mnist['train'][0], mnist['train'][1], mnist['test'][0], mnist['test'][1]
    print(mnist_metadata)
    

4. MNIST データセットの確認

5. MNIST データセットのデータフレームへの変換