localrf のインストール(Python,PyTorch を使用)(Windows 上)

前準備

Build Tools for Visual Studio 2022 のインストール(Windows 上)

Build Tools for Visual Studio は,Visual Studio の IDE を含まない C/C++ コンパイラ,ライブラリ,ビルドツール等のコマンドライン向け開発ツールセットである。

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。

REM VC++ ランタイム
winget install --scope machine --accept-source-agreements --accept-package-agreements --silent --id Microsoft.VCRedist.2015+.x64

REM Build Tools + Desktop development with C++(VCTools)+ 追加コンポーネント(一括)
winget install --id Microsoft.VisualStudio.2022.BuildTools ^
  --override "--passive --wait --add Microsoft.VisualStudio.Workload.VCTools --includeRecommended --add Microsoft.VisualStudio.Component.VC.Llvm.Clang --add Microsoft.VisualStudio.ComponentGroup.ClangCL --add Microsoft.VisualStudio.Component.VC.CMake.Project --add Microsoft.VisualStudio.Component.Windows11SDK.26100"

--add で追加されるコンポーネント

上記のコマンドでは,まず Build Tools 本体と Visual C++ 再頒布可能パッケージをインストールし,次に setup.exe を用いて以下のコンポーネントを追加している。

インストール完了の確認

winget list Microsoft.VisualStudio.2022.BuildTools

上記以外の追加のコンポーネントが必要になった場合は Visual Studio Installer で個別にインストールできる。

Visual Studio の機能を必要とする場合は、追加インストールできる。

Python 3.12 のインストール

以下のいずれかの方法で Python 3.12 をインストールする。

方法1:winget によるインストール

Python がインストール済みの場合、この手順は不要である。管理者権限コマンドプロンプトで以下を実行する。管理者権限のコマンドプロンプトを起動するには、Windows キーまたはスタートメニューから「cmd」と入力し、表示された「コマンドプロンプト」を右クリックして「管理者として実行」を選択する。

winget install -e --id Python.Python.3.12 --scope machine --silent --accept-source-agreements --accept-package-agreements --override "/quiet InstallAllUsers=1 PrependPath=1 AssociateFiles=1 InstallLauncherAllUsers=1"

--scope machine を指定することで、システム全体(全ユーザー向け)にインストールされる。このオプションの実行には管理者権限が必要である。インストール完了後、コマンドプロンプトを再起動すると PATH が自動的に設定される。

方法2:インストーラーによるインストール

  1. Python 公式サイト(https://www.python.org/downloads/)にアクセスし、「Download Python 3.x.x」ボタンから Windows 用インストーラーをダウンロードする。
  2. ダウンロードしたインストーラーを実行する。
  3. 初期画面の下部に表示される「Add python.exe to PATH」に必ずチェックを入れてから「Customize installation」を選択する。このチェックを入れ忘れると、コマンドプロンプトから python コマンドを実行できない。
  4. 「Install Python 3.xx for all users」にチェックを入れ、「Install」をクリックする。

インストールの確認

コマンドプロンプトで以下を実行する。

python --version

バージョン番号(例:Python 3.12.x)が表示されればインストール成功である。「'python' は、内部コマンドまたは外部コマンドとして認識されていません。」と表示される場合は、インストールが正常に完了していない。

Git のインストール

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要となる。

REM Git をシステム領域にインストール
winget install --scope machine --id Git.Git -e --silent --accept-source-agreements --accept-package-agreements
REM Git のパス設定
set "GIT_PATH=C:\Program Files\Git\cmd"
for /f "skip=2 tokens=2*" %a in ('reg query "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v Path') do set "SYSTEM_PATH=%b"
if exist "%GIT_PATH%" (
    echo "%SYSTEM_PATH%" | find /i "%GIT_PATH%" >nul
    if errorlevel 1 setx PATH "%GIT_PATH%;%SYSTEM_PATH%" /M >nul
)

関連する外部ページ

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    
    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).
    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    サイト内の関連ページ

    関連する外部ページ

localrf のインストール(Windows 上)

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. ソースコードのダウンロード,学習済みモデルのダウンロード
    python -m pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg kornia lpips tensorboard imageio easydict matplotlib scipy plyfile joblib timm
    
    cd /d c:%HOMEPATH%
    rmdir /s /q localrf
    git clone --recursive https://github.com/facebookresearch/localrf
    cd localrf
    
    mkdir weights
    cd weights
    curl -L -O https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt
    cd ..
    curl -L -O https://www.dropbox.com/s/4j4z58wuv8o0mfz/models.zip
    powershell -command "Expand-Archive -Path models.zip" .
    

localrf の動作確認(Windows 上)

RAFT を動作させてみる

cd RAFT
python demo.py --model=../models/raft-things.pth --path=demo-frames