BASNet のインストールとテスト実行(顕著オブジェクトの検出)(Python,PyTorch を使用)(Windows 上)

目次BASNet は, ディープラーニングにより,Salient Object Detection (顕著オブジェクトの検出)を行う一手法.2019年発表.

BASNet は次の2つのモジュールから構成される

  1. 前準備
  2. BASNet のインストール
  3. 顕著オブジェクトの検出の実行

文献

Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Gao, Chao and Dehghan, Masood and Jagersand, Martin, BASNet: Boundary-Aware Salient Object Detection, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

https://openaccess.thecvf.com/content_CVPR_2019/papers/Qin_BASNet_Boundary-Aware_Salient_Object_Detection_CVPR_2019_paper.pdf

関連する外部ページ

前準備

Build Tools for Visual Studio 2022 のインストール(Windows 上)

Build Tools for Visual Studio は,Visual Studio の IDE を含まない C/C++ コンパイラ,ライブラリ,ビルドツール等のコマンドライン向け開発ツールセットである。

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。

REM VC++ ランタイム
winget install --scope machine --accept-source-agreements --accept-package-agreements --silent --id Microsoft.VCRedist.2015+.x64

REM Build Tools + Desktop development with C++(VCTools)+ 追加コンポーネント(一括)
winget install --id Microsoft.VisualStudio.2022.BuildTools ^
  --override "--passive --wait --add Microsoft.VisualStudio.Workload.VCTools --includeRecommended --add Microsoft.VisualStudio.Component.VC.Llvm.Clang --add Microsoft.VisualStudio.ComponentGroup.ClangCL --add Microsoft.VisualStudio.Component.VC.CMake.Project --add Microsoft.VisualStudio.Component.Windows11SDK.26100"

--add で追加されるコンポーネント

上記のコマンドでは,まず Build Tools 本体と Visual C++ 再頒布可能パッケージをインストールし,次に setup.exe を用いて以下のコンポーネントを追加している。

インストール完了の確認

winget list Microsoft.VisualStudio.2022.BuildTools

上記以外の追加のコンポーネントが必要になった場合は Visual Studio Installer で個別にインストールできる。

Visual Studio の機能を必要とする場合は、追加インストールできる。

Python 3.12 のインストール

以下のいずれかの方法で Python 3.12 をインストールする。

方法1:winget によるインストール

Python がインストール済みの場合、この手順は不要である。管理者権限コマンドプロンプトで以下を実行する。管理者権限のコマンドプロンプトを起動するには、Windows キーまたはスタートメニューから「cmd」と入力し、表示された「コマンドプロンプト」を右クリックして「管理者として実行」を選択する。

winget install -e --id Python.Python.3.12 --scope machine --silent --accept-source-agreements --accept-package-agreements --override "/quiet InstallAllUsers=1 PrependPath=1 AssociateFiles=1 InstallLauncherAllUsers=1"

--scope machine を指定することで、システム全体(全ユーザー向け)にインストールされる。このオプションの実行には管理者権限が必要である。インストール完了後、コマンドプロンプトを再起動すると PATH が自動的に設定される。

方法2:インストーラーによるインストール

  1. Python 公式サイト(https://www.python.org/downloads/)にアクセスし、「Download Python 3.x.x」ボタンから Windows 用インストーラーをダウンロードする。
  2. ダウンロードしたインストーラーを実行する。
  3. 初期画面の下部に表示される「Add python.exe to PATH」に必ずチェックを入れてから「Customize installation」を選択する。このチェックを入れ忘れると、コマンドプロンプトから python コマンドを実行できない。
  4. 「Install Python 3.xx for all users」にチェックを入れ、「Install」をクリックする。

インストールの確認

コマンドプロンプトで以下を実行する。

python --version

バージョン番号(例:Python 3.12.x)が表示されればインストール成功である。「'python' は、内部コマンドまたは外部コマンドとして認識されていません。」と表示される場合は、インストールが正常に完了していない。

Git のインストール

以下のコマンドを管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。管理者権限は、wingetの--scope machineオプションでシステム全体にソフトウェアをインストールするために必要となる。

REM Git をシステム領域にインストール
winget install --scope machine --id Git.Git -e --silent --accept-source-agreements --accept-package-agreements
REM Git のパス設定
set "GIT_PATH=C:\Program Files\Git\cmd"
for /f "skip=2 tokens=2*" %a in ('reg query "HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment" /v Path') do set "SYSTEM_PATH=%b"
if exist "%GIT_PATH%" (
    echo "%SYSTEM_PATH%" | find /i "%GIT_PATH%" >nul
    if errorlevel 1 setx PATH "%GIT_PATH%;%SYSTEM_PATH%" /M >nul
)

関連する外部ページ

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    
    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).
    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    サイト内の関連ページ

    関連する外部ページ

BASNet のインストール

  1. 以下の手順を管理者権限コマンドプロンプトで実行する (手順:Windowsキーまたはスタートメニュー → cmd と入力 → 右クリック → 「管理者として実行」)。
  2. BASNet のダウンロード
    cd /d c:%HOMEPATH%
    rmdir /s /q BASNet
    git clone https://github.com/NathanUA/BASNet.git
    
  3. 学習済みモデルのダウンロード

    公式ページ https://github.com/xuebinqin/BASNet の指示による. 学習済みモデル(ファイル名 basenet.pth)は,次で公開されている. ダウンロードし,saved_models/basnet_bsi の下に置く

    https://drive.google.com/open?id=1s52ek_4YTDRt_EOkx1FS53u-vJa0c4nu

顕著オブジェクトの検出の実行

  1. test_data\test_results の下に,test_images というフォルダを作る.
  2. Windows で,コマンドプロンプトを実行
  3. テスト用の画像のダウンロードと確認表示
    cd /d c:%HOMEPATH%
    cd BASNet
    cd test_data\test_images
    curl -L https://github.com/opencv/opencv/blob/master/samples/data/fruits.jpg?raw=true -o fruits.jpg
    curl -L https://github.com/opencv/opencv/blob/master/samples/data/home.jpg?raw=true -o home.jpg
    curl -L https://github.com/opencv/opencv/blob/master/samples/data/squirrel_cls.jpg?raw=true -o squirrel_cls.jpg
    
  4. テスト用の画像のダウンロードと確認表示
    fruits.jpg
    home.jpg
    squirrel_cls.jpg
    
  5. 顕著オブジェクトの検出
    cd /d c:%HOMEPATH%
    cd BASNet
    python basnet_test.py
    
  6. test_data\test_results\test_images に結果が保存されているので確認.