Meta の言語モデルと日本語で対話できる chatBOT プログラム(chatBOT)(FlexGen, DeepL, Python を使用)(Windows 上)

FlexGen は,英語,中国語に対応しているようである. そこで,日本語から英語,英語から日本語への翻訳を DeepL API を用いて行い,日本語での対話ができる chatBOT を作る.Python のプログラムを紹介.

サイト内の関連ページ

関連する外部ページ

前準備

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)または Visual Studio 2022 のインストール(Windows 上)

インストールの判断Build Tools for Visual Studio は,開発ツールセットである. Visual Studio は統合開発環境であり,いくつかの種類があり,Build Tools for Visual Studioの機能を含むか連携して使用するものである.インストールは以下の基準で判断してください:

不明な点がある場合は,Visual Studio 全体をインストール を行う方が良い.

Build Tools for Visual Studio 2022 のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Build Tools for Visual Studio 2022と VC2015 再配布可能パッケージをインストールするものである.

    winget install --scope machine Microsoft.VisualStudio.2022.BuildTools 
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Build Tools for Visual Studio 2022 での C++ によるデスクトップ開発,CLI,ATL,MFC のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Build Tools 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をクリック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」,「ATL」,「MFC」をチェックする.その後,「変更」をクリック.

Visual Studio のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Visual Studio Community 2022と VC2015 再配布可能パッケージをインストールするものである.

    winget install --scope machine Microsoft.VisualStudio.2022.Community
    winget install --scope machine Microsoft.VCRedist.2015+.x64
    
  2. Visual Studio での C++ によるデスクトップ開発,CLI のインストール(Windows 上)
    1. Visual Studio Installer の起動

      起動方法: スタートメニューの「Visual Studio Installer」を選ぶ.

    2. Visual Studio Community 2022 で「変更」を選ぶ.
    3. C++ によるデスクトップ開発」をチェック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」をチェックする.その後,「インストール」をクリック.

Python 3.10,Git のインストール(Windows 上)

Pythonは,プログラミング言語の1つ. Gitは,分散型のバージョン管理システム.

手順

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

    次のコマンドを実行

    次のコマンドは,Python ランチャーとPython 3.10とGitをインストールし,Gitパスを通すものである.

    次のコマンドでインストールされるGitは 「git for Windows」と呼ばれるものであり, Git,MinGW などから構成されている.

    winget install --scope machine Python.Launcher
    winget install --scope machine Python.Python.3.10
    winget install --scope machine Git.Git
    powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\Git\cmd\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
    

関連する外部ページ

サイト内の関連ページ

関連項目Python, Git バージョン管理システム, Git の利用

Build Tools for Visual Studio 2022,NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.9.7 のインストール(Windows 上)

サイト内の関連ページNVIDIA グラフィックスボードを搭載しているパソコンの場合には, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う.

関連する外部ページ

PyTorch のインストール(Windows 上)

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. PyTorch のページを確認

    PyTorch の公式ページ: https://pytorch.org/index.html

  3. 次のようなコマンドを実行(実行するコマンドは,PyTorch のページの表示されるコマンドを使う).

    次のコマンドを実行することにより, PyTorch 2.3 (NVIDIA CUDA 11.8 用)がインストールされる. 但し,Anaconda3を使いたい場合には別手順になる.

    事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    PyTorch で,GPU が動作している場合には,「torch.cuda.is_available()」により,True が表示される.

    python -m pip install -U --ignore-installed pip
    python -m pip uninstall -y torch torchvision torchaudio torchtext xformers
    python -m pip install -U torch torchvision torchaudio numpy --index-url https://download.pytorch.org/whl/cu118
    
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    Anaconda3を使いたい場合には, Anaconda プロンプト (Anaconda Prompt)管理者として実行し, 次のコマンドを実行する. (PyTorch と NVIDIA CUDA との連携がうまくいかない可能性があるため,Anaconda3を使わないことも検討して欲しい).

    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.8 cudnn -c pytorch -c nvidia
    py -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    サイト内の関連ページ

    関連する外部ページ

Python の deepl のインストール(Windows 上)

Windows では次のコマンドを実行.

python -m pip install -U deepl

Ubuntu では次のコマンドを実行.

sudo pip3 install -U deepl

DeepL API の認証キー

DeepL API の認証キーの取得はオンラインで可能である.クレジットカード番号の登録などが必要になる.

DeepL API の認証キーの取得と操舵確認: 別ページ »で説明

Meta の言語モデルと日本語で対話できる chatBOT プログラム(FlexGen, DeepL, Python を使用)(Windows 上)

次のプログラムは,FlexGen に同封のプログラムを,DeepL 翻訳も行うように書き換えたもの.

使用するときは,「auth_key = "<DeepL API の AUTH KEY>"」には, DeepL API の認証キーを書くこと.

プログラム実行は,次のプログラムを c.pyのようなファイル名で保存し,「python c.py --model facebook/opt-6.7b」のようなコマンドで行う.「opt-6.7b」のところは,使用するOPT言語モデル名を指定.

"""Run a chatBOT with FlexGen and OPT models."""
# usage: python c.py --model facebook/opt-6.7b
import argparse
import sys
import deepl
import win32com.client
import flexgen
from flexgen.flex_opt import (Policy, OptLM, ExecutionEnv, CompressionConfig, str2bool)
from transformers import AutoTokenizer

auth_key = "<DeepL API の AUTH KEY>"
translator = deepl.Translator(auth_key)
speech = win32com.client.Dispatch("Sapi.SpVoice")

from transformers import AutoTokenizer
from flexgen.flex_opt import (Policy, OptLM, ExecutionEnv, CompressionConfig,
        str2bool)


def main(args):
    # Initialize environment
    env = ExecutionEnv.create(args.offload_dir)

    # Offloading policy
    policy = Policy(1, 1,
                    args.percent[0], args.percent[1],
                    args.percent[2], args.percent[3],
                    args.percent[4], args.percent[5],
                    overlap=True, sep_layer=True, pin_weight=args.pin_weight,
                    cpu_cache_compute=False, attn_sparsity=1.0,
                    compress_weight=args.compress_weight,
                    comp_weight_config=CompressionConfig(
                        num_bits=4, group_size=64,
                        group_dim=0, symmetric=False),
                    compress_cache=args.compress_cache,
                    comp_cache_config=CompressionConfig(
                        num_bits=4, group_size=64,
                        group_dim=2, symmetric=False))

    # Model
    print("Initialize...")
    tokenizer = AutoTokenizer.from_pretrained("facebook/opt-30b", padding_side="left")
    tokenizer.add_bos_token = False
    stop = tokenizer("\n").input_ids[0]

    model = OptLM(args.model, env, args.path, policy)

    context = (
        "A chat between a curious human and a knowledgeable artificial intelligence assistant.\n"
        "Human: Hello! What can you do?\n"
        "Assistant: As an AI assistant, I can answer questions and chat with you.\n"
    )

    # Chat
    print(context, end="")
    while True:
        inp = input("Human: ")
        if not inp:
            print("exit...")
            break

        speech.Speak(inp)
        result = translator.translate_text(inp, target_lang="EN-US")
        print(result)

        context += "Human: " + result.text + "\n"
        inputs = tokenizer([context])
        output_ids = model.generate(
            inputs.input_ids,
            do_sample=True,
            temperature=0.7,
            max_new_tokens=96,
            stop=stop)
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
        try:
            index = outputs.index("\n", len(context))
        except ValueError:
            outputs += "\n"
            index = outputs.index("\n", len(context))
        
        outputs = outputs[:index + 1]
        print(outputs[len(context):], end="")
        translated = translator.translate_text(outputs[len(context):], target_lang="JA")
        print(translated)
        speech.Speak(translated)
        context = outputs

    # TODO: optimize the performance by reusing context cache and reducing redundant computation.

    # Shutdown
    env.close_copy_threads()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="facebook/opt-6.7b",
        help="The model name.")
    parser.add_argument("--path", type=str, default="~/opt_weights",
        help="The path to the model weights. If there are no cached weights, "
             "FlexGen will automatically download them from HuggingFace.")
    parser.add_argument("--offload-dir", type=str, default="~/flexgen_offload_dir",
        help="The directory to offload tensors. ")
    parser.add_argument("--percent", nargs="+", type=int,
        default=[100, 0, 100, 0, 100, 0],
        help="Six numbers. They are "
         "the percentage of weight on GPU, "
         "the percentage of weight on CPU, "
         "the percentage of attention cache on GPU, "
         "the percentage of attention cache on CPU, "
         "the percentage of activations on GPU, "
         "the percentage of activations on CPU")
    parser.add_argument("--pin-weight", type=str2bool, nargs="?",
        const=True, default=True)
    parser.add_argument("--compress-weight", action="store_true",
        help="Whether to compress weight.")
    parser.add_argument("--compress-cache", action="store_true",
        help="Whether to compress cache.")
    args = parser.parse_args()

    assert len(args.percent) == 6

    main(args)

下の実行結果では,エベレストの高さを回答している.

下の実行結果では,利用者からの質問により,コンピュータ,チャットボット について説明している