TensorFlow GPU 版 1.15.5,Python 3.7 のインストールと動作確認(Windows 上)
【目次】
- Visual Studio Community 2017 のインストール
- NVIDIA ドライバのインストール(Windows 上)
- NVIDIA CUDA ツールキット 10.0 のインストール(Windows 上)
- NVIDIA cuDNN 7.6.5 のインストール
- Python 3.7 のインストール(Windows 上)
- TensorFlow 1.15.5, Keras, MatplotLib, Python 用 opencv-python のインストール(Windows 上)
- TensorFlow の動作確認
TensorFlow 1.15.5 を動かすため:
- NVIDIA CUDA ツールキット のバージョンは,10.0 を使う必要がある.
- NVIDIA cuDNN 7.6.5 を使う必要がある.
- Python は,3.7 もしくは 3.6 を使う必要がある.(根拠: https://pypi.org/project/tensorflow/1.15.5/#files)
ここでは,Python 3.7 を使う.
ここでは,次の方針で設定する.
- Python は 2 つインストールする.Windows では,Python を複数インストールすることは簡単である.(3.6, 3.7, 3.8, 3.9 のように 3.X ごとにインストールディレクトリが分かれる).
- 1つは,Python 3.7 をインストールし,その上で,TensorFlow 1.15.5 をインストールする.(その手順は,このページで説明する).
TensorFlow 1.15.5 に対応する Python の最新版は,Python 3.7 である.(根拠: https://pypi.org/project/tensorflow/1.15.5/#files)
- もう1つは,Python 3.7 とは違うバージョンの Python をインストールする.(1.15.5 以外の TensorFlow を動かす事を想定).
- Windows で,Python を複数インストールするので,Python の使用時に Python ランチャーを使う.
例えば,Python 3.7 を使うとき: py -3.7, py -3.7 -m pip のようにバージョン指定
例えば,Python 3.10 を使うとき: py -3.10, py -3.10 -m pip のようにバージョン指定
【サイト内の関連ページ】
- NVIDIA 社のグラフィックス・カードが持つ GPU の機能を使うとき,NVIDIA CUDA ツールキット,NVIDIA cuDNN を利用することができる.
- GPU環境でのTensorFlow 2.10.1のインストールと活用(Windows 上)
このWebページに記載しているプログラムは https://github.com/tensorflow/tensorflow#download-and-setup をもとに作成
GPUとは
GPUは,グラフィックス・プロセッシング・ユニット(Graphics Processing Unit)の略です.その高い並列計算能力から,3次元コンピュータグラフィックス,3次元ゲーム,動画編集,科学計算,ディープラーニングなど,並列処理が必要な幅広い分野で活用されています.
.Visual Studio Community 2017 のインストール
NVIDIA CUDA 10.0 は Visual Studio Commnity 2017, 2015, 2013, 2012 と連携して動く機能がある.
NVIDIA CUDA 10.0 のインストールの前に, Visual Studio Commnity 2017 のインストールを行う.
Visual Studio Commnity 2017 のインストールは, https://visualstudio.microsoft.com/ja/vs/older-downloads/ で「2017」を選び,「ダウンロード」をクリック. その後表示されるダウンロードの画面で, 「Visual Studio Commnity 2017」を選ぶ. インストール時には「C++ によるデスクトップ開発」をチェックしてインストールする.
NVIDIA ドライバのインストール(Windows 上)
NVIDIA ドライバ
NVIDIA ドライバは,NVIDIA製GPUを動作させるための重要なソフトウェアである.このドライバをインストールすることにより,GPUの性能を引き出すことができ,グラフィックス関連のアプリ,AI関連のアプリの高速化が期待できる.
ドライバはNVIDIA公式サイトである https://www.nvidia.co.jp/Download/index.aspx?lang=jp からダウンロードできる.このサイトからダウンロードするときには,グラフィックスカードとオペレーティングシステムを選択する. なお,NVIDIA GeForce Experiance を用いてインストールすることも可能である.
【サイト内の関連ページ】
- NVIDIA グラフィックス・ボードの確認
Windows で,NVIDIA グラフィックス・ボードの種類を調べたいときは, 次のコマンドを実行することにより調べることができる.
wmic path win32_VideoController get name
- NVIDIA ドライバのダウンロード
NVIDIA ドライバは,以下の NVIDIA 公式サイトからダウンロードできる.
- ダウンロードの際には,使用しているグラフィックス・ボードの型番とオペレーティングシステムを選択する.
NVIDIA CUDA ツールキット 10.0 のインストール(Windows 上)
NVIDIA CUDA ツールキットのインストール時の注意点
NVIDIAのGPUを使用して並列計算を行うためのツールセット
主な機能: GPU を利用した並列処理,GPU のメモリ管理,C++をベースとした拡張言語とAPIとライブラリ
【NVIDIA CUDA ツールキットの動作に必要なもの】
- CUDA対応のNVIDIA GPUが必要.
そのために,NVIDIA グラフィックス・ボードを確認する. Windows で,NVIDIA グラフィックス・ボードの種類を調べたいときは, 次のコマンドを実行することにより調べることができる.
wmic path win32_VideoController get name
- NVIDIA ドライバのダウンロードとインストール
NVIDIA ドライバは,以下の NVIDIA 公式サイトからダウンロードできる. ダウンロードの際には,使用しているグラフィックス・ボードの型番とオペレーティングシステムを選択する.
- Windows では,インストール前に,Build Tools for Visual Studio もしくは Visual Studio をインストールしておくことが必要である.
【Windows でインストールするときの注意点】
- Windows では, NVIDIA CUDA ツールキットのインストール中は,なるべく他のウインドウはすべて閉じておくこと.
- NVIDIA CUDA ツールキットのインストールが終わったら,ユーザ環境変数 TEMP の設定を行う.
Windows のユーザ名が日本語のとき,nvcc がうまく動作しないエラーを回避するためである.
ユーザ環境変数 TEMP に「C:\TEMP」を設定するために, コマンドプロンプトで,次のコマンドを実行する.
mkdir C:\TEMP powershell -command "[System.Environment]::SetEnvironmentVariable(\"TEMP\", \"C:\TEMP\", \"User\")"
【関連する外部ページ】
- NVIDIA CUDA ツールキットのアーカイブの公式ページ: https://developer.nvidia.com/cuda-toolkit-archive
- NVIDIA CUDA ツールキット の公式のドキュメント: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
- NVIDIA CUDA ツールキットのインストールに関する,NVIDIA CUDA クイックスタートガイドの公式ページ: https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html
【関連項目】 NVIDIA CUDA ツールキット, NVIDIA CUDA ツールキット 12.5 のインストール(Windows 上), NVIDIA CUDA ツールキット 11.8 のインストール(Windows 上)
TensorFlow 1.15.5 が必要とする NVIDIA CUDA ツールキットと NVIDIA cuDNN のバージョンの確認
TensorFlow 1.15.5 を動かすために,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 を使う.
(10.2, 10.1 は不可.実際に試みて検証済み).
NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 の根拠: cudart64_100.dll, cudnn64_7.dll が必要
インストール手順
- NVIDIA CUDA ツールキットのアーカイブのページを開く
- NVIDIA CUDA ツールキットのバージョンを選ぶ
ここでは,NVIDIA CUDA ツールキットの10.0を選んでいる
- 「Windows」,「10」,「exe [local]」を選ぶ.
- 「Base Installer」の右横の「Download」をクリックして,.exe ファイルをダウンロード
- exe ファイルのダウンロードが始まる
- ダウンロードした .exe ファイルを実行する.
- 展開(解凍)先ディレクトリ(フォルダ)の指定.
既定(デフォルト)のままでよい.「OK」をクリック.
- 展開(解凍)が自動で行われるので,しばらく待つ.
- ライセンス条項の確認.
- インストールオプションは,「カスタム(詳細)」を選び,「次へ」をクリック.
- コンポーネントを確認する.
「CUDA」にチェックする.その他は,必要なものがあればチェックする.「次へ」をクリック.
複数の版の NVIDIA CUDA ツールキットをインストールする場合には,古い版のNVIDIA CUDA ツールキットをインストールするときに「CUDA」だけを選ぶようにする.
- インストール場所の選択は,既定(デフォルト)のままでよい.「次へ」をクリック.
- Visual Studio Integration について表示された場合
表示されなくても問題はない.
表示された場合には,NVIDIA CUDA のインストールを中止して, Visual Studio Commnity 2017 のインストールを行う.
Visual Studio Commnity 2017 のインストールは, https://visualstudio.microsoft.com/ja/vs/older-downloads/ で「2017」を選び,「ダウンロード」をクリック. その後表示されるダウンロードの画面で, 「Visual Studio Commnity 2017」を選ぶ. インストール時には「C++ によるデスクトップ開発」をチェックしてインストールする.
- このとき,Windows セキュリティの画面が開くことがある.開いた場合には,「インストール」をクリック.
- インストールが始まるので,確認する.
- このとき,グラフィックス・カードのドライバのインストールについての画面が表示される場合がある.「インストール」をクリックして,インストールを続行する.
- Visual Studio がインストール済みのときは,Nsight Visual Studio がインストールされたことが確認できる.確認したら「次へ」をクリック.
Visual Studio をインストールしていないときは,Nsight for Visual Studio はインストールされない.
- インストール終了の確認.「閉じる」をクリック.
* 「コンピュータを再起動してください」と表示される場合がある.そのときは,再起動する.
- GeForce Experience が自動で開く場合がある
- 利用条件について表示されたときは、よく確認し、納得できる場合のみ同意・続行する
- リリースハイライトが表示される場合がある.
リリースハイライトを確認したら,「x」をクリックして閉じる.
- このとき,最新版への更新が始まり,起動に時間がかかることがある.
そして「お使いのGPU向けの新しいドライバーが入手可能です」と表示されることがある.そのときは,新しいドライバをインストールする.
NVIDIA cuDNN 7.6.5 のインストール
インストールするNVIDIA cuDNN のバージョンは 7.6.5 for CUDA 10.0
NVIDIA cuDNN
NVIDIA cuDNN は,NVIDIA CUDA ツールキット上で動作する、高性能なディープラーニング用ライブラリです.畳み込みニューラルネットワーク (CNN) やリカレントニューラルネットワーク (RNN) など,さまざまなディープラーニングモデルのトレーニングと推論を高速化します.
【cuDNN利用時の注意点: zlibwapi.dll エラー】
Windows環境でcuDNNを利用するアプリケーションを実行した際に、「Could not locate zlibwapi.dll. Please make sure it is in your library path!」というエラーが表示されることがあります。これは、cuDNNの一部の機能が圧縮ライブラリである zlib
に依存しているためです。このエラーが発生した場合は、後述する手順で ZLIB DLL をインストールする必要があります。
【関連する外部ページ】
- NVIDIA cuDNN の公式ページ(ダウンロードにはDeveloper Programへの登録が必要): https://developer.nvidia.com/cudnn
NVIDIA cuDNN のインストール(Windows 上)の概要
- NVIDIA Developer Program メンバーシップへの加入: cuDNNのダウンロードには無料のメンバーシップ登録が必要です。
NVIDIA Developer Program の公式ページ: https://developer.nvidia.com/developer-program
- 互換バージョンの選択とダウンロード: インストール済みのCUDAツールキットのバージョン (今回は11.x) に適合するcuDNNのバージョン (今回はv8.9.7) を選択し、Windows用のzipファイルをダウンロードします。
- ファイルの展開と配置: ダウンロードしたzipファイルを展開(解凍)し、中のファイル(
bin
,include
,lib
フォルダ内)を、CUDAツールキットのインストールディレクトリにコピーします。 - (オプション) 環境変数の設定: 必要に応じてシステム環境変数
CUDNN_PATH
を設定します。 - (必要に応じて) ZLIB DLL のインストール:
zlibwapi.dll
が見つからないエラーが発生する場合にインストールします。 - 動作確認: cuDNNライブラリ (
cudnn64_*.dll
) にパスが通っているか確認します。
NVIDIA cuDNN のダウンロードとインストールの手順
- NVIDIA cuDNN のウェブページを開く
- ダウンロードしたいので,cuDNNのところにある「Download cuDNN」をクリック.
- NVIDIA Developer Program メンバーシップに入る
NVIDIA cuDNN のダウンロードのため.
「Join now」をクリック.その後,画面の指示に従う. 利用者本人が,電子メールアドレス,表示名,パスワード,生年月日を登録.利用条件等に合意.
- ログインする
- 調査の画面が出たときは,調査に応じる
- ライセンス条項の確認
- 「Archived cuDNN Releases」をクリック
- ダウンロードしたいバージョンを選ぶ
ここでは「cuDNN v 7.6.5, for CUDA 10.0」を選んでいる.
このとき,画面の「for CUDA ...」のところを確認し,使用するNVIDIA CUDA のバージョンに合うものを選ぶこと.
- Windows にインストールするので Windows 版を選ぶ
- ダウンロードが始まる.
- ダウンロードした .zip ファイルを展開(解凍)する.展開の結果 cuda という名前のディレクトリができる.その中のサブディレクトリを確認しておく.
- NVIDIA CUDA ツールキットをインストールしたディレクトリは,「C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0」
のようになっている.確認する.
- 確認したら,
さきほど展開してできたディレクトリcuda の下にあるすべてのファイルとディレクトリを,NVIDIA CUDA ツールキットをインストールしたディレクトリにコピーする
インストール後に行う環境変数の設定
「NVIDIA cuDNN をインストールしたディレクトリ」をもとに環境変数を設定する.
「NVIDIA cuDNN をインストールしたディレクトリ」が C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 の場合には,次のように設定する.
- すでに,c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin には,パスが通っている.
- Windows の システム環境変数 CUDNN_PATH に,c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 を設定
Windows で,コマンドプロンプトを管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
次のコマンドを実行
powershell -command "[System.Environment]::SetEnvironmentVariable(\"CUDNN_PATH\", \"c:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\", \"Machine\")"
- Windows の システム環境変数 Pathに,次が含まれていることを確認
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
パスの確認
次の操作により,cudnn64_7.dll にパスが通っていることを確認する
Windows のコマンドプロンプトを開き,次のコマンドを実行する.エラーメッセージが出ないことを確認.
where cudnn64_7.dll

Python 3.7 のインストール(Windows 上)
Pythonは,プログラミング言語の1つ.
【手順】
- Windows で,コマンドプロンプトを管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
- 次のコマンドを実行
次のコマンドは,Python ランチャーとPython 3.7をインストールする.
【関連する外部ページ】
- Python の公式ページ: https://www.python.org/
【サイト内の関連ページ】
【関連項目】 Python
TensorFlow 1.15.5, Keras, MatplotLib, Python 用 opencv-python のインストール(Windows 上)
設定の要点
システム環境変数 TF_FORCE_GPU_ALLOW_GROWTH の設定: true
インストール手順
- Windows で,コマンドプロンプトを管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
- 使用する Python 3.7 のバージョンの確認
py -3.7 --version
- pip と setuptools の更新
「pip install ...」は,Python パッケージをインストールするためのコマンド.
py -3.7 -m pip install -U pip setuptools
- TensorFlow, Keras 関係のパッケージのアンインストール操作
トラブルの可能性を減らすために,関係のパッケージのアンインストールを行っておく.
py -3.7 -m pip uninstall -y tensorflow tensorflow-cpu tensorflow-gpu tensorflow-intel tensorflow-text tensorflow-estimator tf-models-official tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer
- インストールのため,次のコマンドを実行する.
- 「tensorflow==1.15.5」のところでTensorFlow のバージョンを指定している.
- TensorFlow の GPU 版をインストールしている.TenforFlow の GPU 版は,GPU がない場合には CPU を使って動作する.
- numpy, protobuf, keras, matplotlib, pandas, scipy は旧バージョンをインストール.
py -3.7 -m pip install -U numpy==1.16.2 protobuf==3.19.4 tensorflow-gpu==1.15.5 keras==2.3.1 scipy==1.5.4 pillow pydot matplotlib==3.4.3 seaborn pandas==1.1.5 scipy==1.5.4 scikit-learn scikit-learn-intelex opencv-python opencv-contrib-python py -3.7 -m pip install git+https://github.com/tensorflow/docs py -3.7 -m pip install git+https://github.com/tensorflow/examples.git py -3.7 -m pip install git+https://www.github.com/keras-team/keras-contrib.git
TensorFlow のインストールのとき,「Could not find a version that satifies the requirement tensorflow==1.15.5」のように表示される場合には,インストールされている Python が新しすぎるか,古すぎる.
TensorFlow GPU 版 1.15 を動かすには,Python 3.6 か Python 3.7 を使うこと. Windows での Python 3.6 のインストールは,別ページ »で説明 Python 3.7 のインストールは,別ページ »で説明
- Windows の システム環境変数 TF_FORCE_GPU_ALLOW_GROWTH に,true を設定
Windows で,コマンドプロンプトを管理者権限で起動する(例:Windowsキーを押し,「cmd」と入力し,「管理者として実行」を選択)
次のコマンドを実行
powershell -command "[System.Environment]::SetEnvironmentVariable(\"TF_FORCE_GPU_ALLOW_GROWTH\", \"true\", \"Machine\")"
動作確認
TensorFlow がインストールできたかを確認したい.
- Windows では,コマンドプロンプトを実行.
- TensorFlow のバージョン確認
py -3.7 -c "import tensorflow as tf; print( tf.__version__ )"
- (GPU を使うとき) TensorFlow からGPU が認識できているかの確認
py -3.7 -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"
実行結果の中に,実行結果の中に,次のように「device_type: "GPU"」があれば,GPUが認識できている.エラーメッセージが出ていないことを確認しておくこと.
ここで,GPU があるのに,TensorFlow から認識されていないかもしれない.
その場合は,Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 のインストールを確認すること.
Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 10.0,NVIDIA cuDNN 7.6.5 のインストール: 別ページ »で説明
TensorFlow 2 のプログラム例
このWebページに記載しているプログラムは https://github.com/tensorflow/tensorflow#download-and-setup をもとに作成.
- TensorFlow がインストールできたかを確認したい.
Windows で Python プログラムを動かす.
メッセージを表示するプログラム
結果として 「b'Hello, TensorFlow!'」のように表示されるので確認する.
py -3.7 import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() result = sess.run(hello) print(result) sess.close() exit()