トップページ情報工学を学ぶ学習・実験環境を整えるWindows でディープラーニング環境を整える

Windows でディープラーニング環境を整える

用途:Windows パソコンで,ディープラーニングの学習,実験,実習ができる環境を整える.

このページでは,次のソフトウェアのインストール,設定手順の概要や詳細情報へのリンクも示す.

目次

  1. ニューラルネットワークの基礎
  2. Windows での操作(注意点まとめ)
  3. Build Tools for Visual Studio (ビルドツール for Visual Studio)のインストール
  4. Git, cmake, 7-Zip のインストール
  5. NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.7.0, NVIDIA cuDNN v8.4.1 のインストール
  6. Python,Python 開発環境,ディープラーニング環境(TensorFlow, PyTorch その他)のインストール
  7. ディープラーニング応用

注意事項

サイト内のまとめページ

  1. 人工知能応用,データ応用,3次元のまとめ
  2. Windows の使い方
  3. Ubuntu の使い方
  4. Python のまとめ
  5. C/C++ のまとめ
  6. R システムのまとめ
  7. Octave のまとめ

サイト内の主な Windows 関連ページ

Ubuntu のインストール,設定,セットアップ別ページにまとめている.

1. ニューラルネットワークの基礎

用語: ニューラルネットワーク,モデル,学習,過学習ドロップアウトCNN,転移学習,データ拡張

用語集:別ページにまとめている.

説明資料: 別ページ にまとめている.

2. Windows での操作(注意点まとめ)

3. Build Tools for Visual Studio (ビルドツール for Visual Studio)のインストール

Build Tools for Visual Studio (ビルドツール for Visual Studio)は,Windows で動くMicrosoft の C++ コンパイラーである.

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)のインストール

Build Tools for Visual Studio は,Windows で動くMicrosoft の C++ コンパイラーである.

ダウンロードページ

https://visualstudio.microsoft.com/ja/visual-cpp-build-tools/

詳細説明

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)のインストール: 別ページで説明している.

インストール手順の概要

  1. ダウンロード URL を開く

    https://visualstudio.microsoft.com/ja/downloads/

  2. このページの「Build Tools のダウンロード」をクリック
  3. ダウンロードが始まる
  4. ダウンロードした .exe ファイルを実行する
  5. 表示を確認し,「続行」をクリック
  6. C++ によるデスクトップ開発」をクリック.「インストール」をクリック.

    [image]

コンパイラの動作確認

  1. まず,エディタを開く(ここでは「メモ帳」を使っている). x64 Native Tools コマンドプロンプト で,次のコマンドを実行. ファイル名は hello.c としている.
    c:
    cd %HOMEPATH%
    notepad hello.c
    

    [image]

  2. いまメモ帳で開いたファイルを, 次のように編集する(コピー&ペーストしてください).そして保存する.
    #include <stdio.h>
    int main() {
        printf("Hello,World!\n");
        printf("sizeof(size_t)=%ld\n", sizeof(size_t));
        return 0;
    }
    

    [image]
  3. 次のコマンドを実行

    結果として,「Hello,World!」「sizeof(size_t)=8」と表示されればOK.

    cd %HOMEPATH%
    cl hello.c
    .\hello.exe
    

    実行結果例

    [image]

4. Git, cmake, 7-Zip のインストール

4.1 Git のインストール

Git のページ https://git-scm.com/ からダウンロードしてインストール:

Git のインストールの詳細: 別ページで説明している.

  1.  Git のページを開く

    https://git-scm.com/

  2.  ダウンロードしたいので「Downloads」をクリック

    [image]
  3. Windows 版が欲しいので 「Windows」をクリック.

    [image]
  4. ダウンロードした .exe ファイルを実行

    このとき,ライセンス条項の確認を行う.設定は既定(デフォルト)のままでも問題はない.

4.2 cmake のインストール

cmake のダウンロードのページ https://cmake.org/download/ からダウンロードしてインストール

cmake のインストールの詳細: 別ページで説明している.

  1. cmake のダウンロードのページを開く

    https://cmake.org/download/

  2. 最新のWindows版バイナリを選ぶ(拡張子は .msi)

    下の図では 64ビットWindows 用を選んでいる

    [image]

4.3 7-Zip のインストール

7-Zip は,Windows で動くソフトウェア.ファイルの圧縮や展開の機能を持つ.

7-Zip のページ: https://sevenzip.osdn.jp/ からダウンロードしてインストールする.

7-Zip のインストールの詳細: 別ページで説明している

  1.  7-Zip のページを開く
    https://sevenzip.osdn.jp/
  2.  ダウンロードしたいので,「7-Zip ... for Windows」の下の,「64 ビット x64」の「ダウンロード」をクリック

    [image]
  3. ダウンロードした .exe ファイルを実行
  4. Windows のシステム環境変数 Pathc:\Program Files\7-Zip追加することにより,パスを通す

    管理者として実行した コマンドプロンプトで,次のコマンドを実行.

    call powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\7-Zip"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
    

5. NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.7.0, NVIDIA cuDNN v8.4.1 のインストール

GPU は,グラフィックス・プロセッシング・ユニットの略で、コンピュータグラフィックス関連の機能,乗算や加算の並列処理の機能などがある. NVIDIA CUDA ツールキット は,NVIDIA社が提供している GPU 用のプラットフォームである.

【インストール手順の詳細説明】

5.1 NVIDIA ドライバ,NVIDIA CUDA ツールキット, NVIDIA cuDNN のインストールの要点と注意点

Windows での追加の注意点

5.2 TensorFlow, PyTorch が必要とするNVIDIA CUDA ツールキットとNVIDIA cuDNN のバージョンの確認

NVIDIA CUDA ツールキット, NVIDIA cuDNN のバージョンは何でも良い」か? そして, 「TensorFlow, PyTorch のバージョンも何でも良い (あるいは,TensorFlow, PyTorch を使う予定はない)」か?

5.3 Build Tools for Visual Studio (ビルドツール for Visual Studio)もしくは Visual Studio のインストール

マイクロソフト C++ ビルドツールもしくはVisual Studio を,前もってインストールしておく.

インストール手順などは上で説明している.

Visual Studio を使う予定がある場合は,Visual Studio をインストールする. Visual Studio を使う予定がない場合は、マイクロソフト C++ ビルドツールのインストールを行う.いずれも,CUDA の nvcc を機能させるため.

5.4 NVIDIA ドライバについて

  1. 古いNVIDIA ドライバ,NVIDIA CUDA がインストール済みのとき,不要なものがあればアンインストール

    Windows のスタートメニューで「設定」,「アプリ」と操作して,「NVIDIA ・・・」を削除

  2. NVIDIA グラフィックス・カードの種類を調べる

    hwinfo (URL: https://www.hwinfo.com) を使って調べることができる.

  3. あとで,NVIDIA CUDA ツールキットをインストールするときに,NVIDIA ドライバを同時にインストールすることができる.

    あとで、NVIDIA CUDA ツールキットをインストールするので、そのときに、NVIDIA ドライバもインストールすることにする.次へ進む.

    但し, NVIDIA CUDA ツールキットの古いバージョンを使う場合には,次のページから,最新のNVIDIA ドライバをダウンロードして,インストールする.

    NVIDIA ドライバのダウンロードページ: https://www.nvidia.co.jp/Download/index.aspx?lang=jp

NVIDIA CUDA ツールキット 11.7.0,NVIDIA cuDNN 8.4.1 のインストール

Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.7.0NVIDIA cuDNN v8.4.1 のインストール: 別ページで説明している.

5.6 nvcc の動作確認

  1. C/C++ をコマンドで使いたいので,Visual Studio の x64 Native Tools コマンドプロンプトを開く.

    起動は,Windows のメニューで「Visual Studio 20..」の下の「x64 Native Tools コマンドプロンプト (x64 Native Tools Command Prompt)」を選ぶ.「x64」は,64ビット版の意味である.

    ※ 32ビットのNative Tools コマンドプロンプトでは nvcc が動かない

    以下の操作は,x64 Native Tools コマンドプロンプトで行う

  2. 確認のため,「where cl」を実行.

    エラーメッセージが出ていないことを確認.

    where cl
    

    [image]
  3. nvccの動作確認のため, https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/に記載のソースコードを使用.

    まず,エディタを開く(ここでは「メモ帳」を使っている).

    x64 Native Tools コマンドプロンプト で,次のコマンドを実行. ファイル名は hello.cu としている.

    cd %HOMEPATH%
    notepad hello.cu
    

    [image]

  4. その後,ファイルを編集し,ファイルを保存.

    ファイル hello.cu ができる.

    [image]
  5. ビルドと実行.

    「nvcc hello.cu」で a.exe というファイルができる. 「Max error: 0.000000」と表示されればOK.

    うまく動かないときは,まず,マイクロソフト C++ ビルドツールの動作を,別ページの手順により確認し,異常があれば,マイクロソフト C++ ビルドツールのインストールなどで対処.それでも動かないときは,NVIDIA CUDA ツールキットのインストールしたときの作業に間違いがなかったかを再確認.

    nvcc hello.cu
    

    [image]
    .\a.exe
    

    [image]

6. Python,Python 開発環境,ディープラーニング環境(TensorFlow, PyTorch その他)のインストール

インストールする Python のバージョンの確認

TensorFlow のバージョンの確認

次のページにより確認.

TensorFlow のタグのページ: https://github.com/tensorflow/tensorflow/tags で確認.

TensorFlow が対応する Python のバージョンの確認

2022年3月時点では次の通りである.

PyTorch が対応する Python のバージョンの確認

2022年3月時点では次の通りである.

その根拠: https://pytorch.org/ に表示される https://download.pytorch.org/whl/lts/1.8/torch_lts.html, https://download.pytorch.org/whl/cu116/torch_stable.html で確認

6.1 Python 3.10 のインストール,pip と setuptools の更新,Python 開発環境,Python コンソール(Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, spyder)のインストール

(1) 古いバージョンの Python のアンインストール

すでに,Python がインストール済みのとき.

ここで示すインストール手順とは異なる設定ですでに Python をインストールしていた場合は,それをそのまま使うよりも, アンインストールしておいたほうがトラブルが少ない可能性がある.

  1. Python をインストール済みであるかを確認.
  2. インストール済みのときは,Pythonをすべてアンインストールしてから,ここから先の操作を開始した方がトラブルが少ない.
  3. Python 関係のファイルの削除

    コマンドプロンプト管理者として実行し,次のコマンドを実行.

    この操作は,必ずPython をすべてアンインストールした後に行うこと.

    [image]

    rmdir /s /q %APPDATA%\Python
    cd "C:\Program Files"
    for /F %i in ('dir /ad /b /w Python3*') do rmdir /s /q %i 
    

(2) Python 3.10 64 ビット版のインストール(Windows 上)

インストールでの注意点

インストール手順

Windows での Python 3.10 のインストール(あとのトラブルが起きにくいような手順を定めている)

  1. TensorFlow のインストール予定がある場合には, 次のページで,必要な Python のバージョンを確認

    URL: https://pypi.org/project/tensorflow-gpu/#files

  2. Python の URL を開く

    URL: https://www.python.org

  3. Windows 版の Python 3.10 をダウンロード

    ページの上の方にある「Downloads」をクリック. 「Downloads」の下にメニューが出るので,その中の「Windows」をクリック

    [image]
  4. Stable Releases」から,Python のバージョンを選ぶ

    ここでは,Python 3.10.x (x は数字)を探して,選ぶ.

    [image]

    以下,Python 3.10.5 を選んだとして説明を続ける.他のバージョンでも以下の手順はほぼ同じである.

    TensorFlow を使う予定がある場合は,https://pypi.org/project/tensorflow-gpu/#filesで,必要な Python のバージョンを確認しておく. 2022/7 時点では,TensorFlow バージョン 2.9 が動くのは,Python 3.10 または Python 3.9 または Python 3.8 または Python 3.7 (https://pypi.org/project/tensorflow/2.9/#files)

  5. ファイルの種類を選ぶ.

    Windows の 64ビット版のインストーラをダウンロードしたいので、「Windows Installer (64-bit)」を選ぶ

    [image]
  6. ダウンロードが始まる

    [image]
  7. インストール時の設定
    1. いまダウンロードした .exe ファイルを右クリック, 右クリックメニューで「管理者として実行」を選ぶ.

      [image]
    2. Python ランチャーをインストールするために,「Install launcher for all users (recommended)」をチェック.

      [image]

      ※ すでに Python ランチャーをインストール済みのときは, 「Install launcher for all users (recommended)」がチェックできないようになっている場合がある.そのときは,チェックせずに進む.

      [image]
    3. Add Python 3.10 to PATH」をチェック.

      [image]
    4. Customize installation」をクリック.

      [image]
    5. オプションの機能 (Optional Features)は,既定(デフォルト)のままでよい. 「Next」をクリック

      [image]
    6. Install for all users」を選ぶ.

      Install for all users」を選ぶ理由.

      ユーザ名が日本語のときのトラブルを防ぐため.

      [image]
    7. そして,Python のインストールディレクトリは,「C:\Program Files\Python310」のように自動設定されることを確認.

      [image]
    8. Install」をクリック

      [image]
    9. インストールが始まる
    10. Disable path length limit」が表示される場合がある.クリックして、パス長の制限を解除する

      表示されない場合は問題ない.そのまま続行.

      [image]
    11. インストールが終了したら,「Close」をクリック

      [image]
  8. インストールのあと,Windows のスタートメニューに「Python 3.10」が増えていることを確認.
  9. システムの環境変数 Path の確認のため,新しくコマンドプロンプトを開き,次のコマンドを実行.

    pypipパスが通っていることの確認である.

    where py
    where pip
    

    where py では「C:\Windows\py.exe」 が表示され, where pip では「C:\Program Files\Python310\Scripts\pip.exe」 が表示されることを確認. (「310」のところは使用する Python のバージョンに読み替えること).

    [image]

    表示されないときは, システムの環境変数Pathに,C:\Program Files\Python310C:\Program Files\Python310\Scripts が追加済みであることを確認(「310」のところは使用する Python のバージョンに読み替えること).無ければ追加し,再度コマンドプロンプトを開いて,再度「where py」,「where pip」を実行して確認.

    それでもうまく行かない場合は,いろいろ原因が考えられる.対処としては,Python のアンインストールを行う.過去,アンインストールがうまく行かなかった可能性を疑う(Python の Scripts の中のファイルで,アンインストール操作により削除されるべきファイルが残っている可能性があるなど)

(3) pip と setuptools の更新

  1. Windows で,コマンドプロンプト管理者として実行

    Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

    コマンドプロンプトを管理者として実行: 別ページで説明している.

  2. 次のコマンドを実行.
    python -m pip install -U pip setuptools
    

    [image]

(4) Python 開発環境として,Python コンソール(Jupyter Qt Console), Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, spyder のインストール

Python, pip, Python 開発環境の起動コマンドのまとめ.

Windows では,python, pip, Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder は,次のコマンドで起動できる.

Windows で複数の Python をインストールしているときは,環境変数 Path で先頭の Python が使用される.

WindowsPython ランチャーでバージョン指定

Ubuntu では,python, pip, Jupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, Spyder は,次のコマンドで起動できる.

Windows, Ubuntu での Python 開発環境,Python コンソールJupyter Qt Console, Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, spyder)のインストール: 別ページで説明している.

Python プログラムを動かすために, Python のコマンド (python あるいは python3) を使う. あるいは, Python の開発環境や Python コンソール(Jupyter Qt ConsolespyderPyCharmPyScripter など)の利用も便利である.

  1. Windows で,コマンドプロンプト管理者として実行

    Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

    コマンドプロンプトを管理者として実行: 別ページで説明している.

  2. 次のコマンドを実行.

    python -m pip install -U pip setuptools jupyterlab jupyter jupyter-console jupytext nteract_on_jupyter spyder
    

    [image]

    Python の隔離された環境を使用したいときは,次のような手順で, venv を用いて,Python の隔離された環境を作る.

    コマンドプロンプト管理者として実行し,次のコマンドを実行.

    Python の使用は「C:\venv\py310\Scripts\activate.bat」の後,「python」で行う.

    py -3.10 -m pip install -U pip setuptools
    py -3.10 -m venv --system-site-packages C:\venv\py310
    C:\venv\py310\Scripts\activate.bat
    python -m pip install -U pip setuptools jupyterlab jupyter jupyter-console jupytext nteract_on_jupyter spyder
    
  3. numpy のインストール

    コマンドプロンプト管理者として実行し,次のコマンドを実行.

    pip install -U numpy matplotlib
    
  4. Jupyter Qt Console の起動チェック

    新しくコマンドプロンプトを開き,次のコマンドを実行. Jupyter Qt Console が開けば OK.

    jupyter qtconsole
    

  5. 確認のため,Jupyter Qt Console で,次の Python プログラムを実行してみる.
    import numpy as np
    %matplotlib inline
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings
    
    x = np.linspace(0, 6, 100)
    plt.style.use('default')
    plt.plot(x, np.sin(x))
    

  6. nteract の起動チェック

    新しくコマンドプロンプトを開き,次のコマンドを実行. ntetact が開けば OK.

    jupyter nteract
    

  7. 確認のため,nteract で,次の Python プログラムを実行してみる.

    そのために「Start a new notebook」の下の「Python」をクリック,次のプログラムを入れ実行.

    import numpy as np
    %matplotlib inline
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings
    
    x = np.linspace(0, 6, 100)
    plt.style.use('default')
    plt.plot(x, np.sin(x))
    

  8. Juypter Notebook で,保存のときに,.py ファイルと .ipyrb ファイルが保存されるように設定.(この設定を行わないときは .ipyrb ファイルのみが保存される)
    1. 次のコマンドで,設定ファイルを生成

      jupyter notebook --generate-config
      
    2. jupyter/jupyter_notebook_config.py を編集し,末尾に,次を追加

      c.NotebookApp.contents_manager_class = "jupytext.TextFileContentsManager"

    3. jupyter notebook を起動し,Edit, Edit Notbook Manager を選ぶ.次のように設定する.

      "jupytext": {"formats": "ipynb,py"}

6.2 numpy, scikit-learn を使ってみる

6.3 numpy, scikit-learn, TensorFlow, Keras, MatplotLib, opencv-python, PyTorch

(1) TensorFlow 2.9.1 (GPU 対応可能), Keras, MatplotLib, Python 用 opencv-python のインストール

設定の要点

システム環境変数 TF_FORCE_GPU_ALLOW_GROWTH の設定: true

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページで説明している.

  2. 使用する Python のバージョンの確認
    python --version
    

    [image]
  3. TensorFlow, Keras 関係のパッケージのアンインストール操作

    トラブルの可能性を減らすために,関係のパッケージのアンインストールを行っておく.

    Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

    python -m pip uninstall -y tensorflow tensorflow-cpu tensorflow-gpu tensorflow-text tf-models-official tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer
    

    [image]
  4. TensorFlow 2.9.1, Keras, MatplotLib, Python 用 opencv-python のインストール

    pip を用いてインストール

    python -m pip install -U tensorflow tf-models-official tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer numpy pillow pydot matplotlib seaborn pandas scipy scikit-learn scikit-learn-intelex opencv-python opencv-contrib-python
    python -m pip install git+https://github.com/tensorflow/docs
    python -m pip install git+https://github.com/tensorflow/examples.git
    python -m pip install git+https://www.github.com/keras-team/keras-contrib.git
    

    [image]
    (以下省略)
  5. TensorFlow のバージョン確認

    バージョン番号が表示されれば OK.下の図とは違うバージョンが表示されることがある.

    python -c "import tensorflow as tf; print( tf.__version__ )"
    

    [image]

    次のようなメッセージが出た場合には,メッセージに従い, NVIDIA ドライバ,NVIDIA CUDA ツールキット, NVIDIA cuDNN のインストールを行う. 但し,GPU がない場合には,このメッセージを無視する.

    [image]
    • Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.7.0NVIDIA cuDNN v8.4.1 のインストール: 別ページで説明している.
    • Windows での NVIDIA cuDNN のインストールの詳細説明: 別ページで説明している.
  6. パッケージの情報の表示

    pip show tensorflow
    

    [image]
  7. (GPU を使うとき) TensorFlow からGPU が認識できているかの確認

    TensorFlow が GPU を認識できているかの確認は,端末で,次を実行して行う.

    python -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"
    

    実行結果の中に,次のように「device_type: "GPU"」があれば,GPUが認識できている.エラーメッセージが出ていないことを確認しておくこと.

    [image]

    ここで,GPU があるのに,TensorFlow から認識されていないかもしれない. TensorFlow GPU 版が指定するバージョンの NVIDIA CUDA ツールキットNVIDIA cuDNN がインストールされていないことが原因かも知れない.

    TensorFlow 2.5 の GPU 版での,cuDNN のバージョンは 8.2TensorFlow 2.4 の GPU 版での,cuDNN のバージョンは 8.0.5TensorFlow 2.3, 2.2, 2.1 の GPU 版での,cuDNN のバージョンは 7.6.そして,TensorFlow 1.13 以上 TensorFlow 2.0 までの GPU 版での,cuDNN のバージョンは7.4 が良いようである.

    Windows での NVIDIA ドライバ,NVIDIA CUDA ツールキット 11.7.0NVIDIA cuDNN v8.4.1 のインストール: 別ページで説明している.

  8. システム環境変数 TF_FORCE_GPU_ALLOW_GROWTH に,true を設定

    管理者として実行した コマンドプロンプトで,次のコマンドを実行.

    call powershell -command "[System.Environment]::SetEnvironmentVariable(\"TF_FORCE_GPU_ALLOW_GROWTH\", \"true\", \"Machine\")"
    

    [image]

(2) TensorFlow, Keras, VGG 16, InceptionV3, Imagenet による画像分類を試してみる

  1. 前準備として h5py, pillow のインストール

    python -m pip install -U h5py pillow
    
  2. 画像の準備

    10.png のようなファイル名で保存しておく

    [image]
  3. Python プログラムの実行
    cd <画像を置いたディレクトリ>
    python  
    

    [image]
  4. VGG 16, Imagenet による学習済みの重みデータによる画像分類を試してみる

    次のプログラムをコピー&ペースト

    Kerasのサイトで公開されているものを少し書き換えて使用。

    「'10.png'」のところは,実際に使用する画像ファイル名に書き換えること.

    import h5py
    from tensorflow.keras.preprocessing import image
    from tensorflow.keras.applications.vgg16 import VGG16
    from tensorflow.keras.applications.vgg16 import preprocess_input
    import numpy as np
    
    m = VGG16(weights='imagenet', include_top=False)
    
    img_path = '10.png'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    features = m.predict(x)
    print(features) 
    

    [image]

    python の終了は「exit()」

  5. InceptionV3, Imagenet による学習済みの重みデータによる画像分類を試してみる

    次のプログラムをコピー&ペースト

    Kerasのサイトで公開されているものを少し書き換えて使用。

    「'10.png'」のところは,実際に使用する画像ファイル名に書き換えること.

    import h5py
    from tensorflow.keras.preprocessing import image
    from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions, InceptionV3
    import numpy as np
    
    m = InceptionV3(weights='imagenet')
    
    img_path = '10.png'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    preds = m.predict(x)
    
    print('Predicted:')
    for p in decode_predictions(preds, top=5)[0]:
        print("Score {}, Label {}".format(p[2], p[1]))
    

    [image]

    python の終了は「exit()」

6.4 PyTorch, Torchvision, Caffe2

Web ブラウザで最新情報を確認ののち,所定のコマンドによりインストールを行う.

PyTorch の URL: https://pytorch.org/

  1. PyTorch の「はじめよう」の Web ページを開く

    https://pytorch.org/get-started/locally/

  2. 種類を選ぶ

    Windows, pip, Python,NVIDIA CUDA ツールキット 11.3 以上 での実行例

    NVIDIA CUDA ツールキットのバージョンは一致するものを選ぶ. 選択肢として出てこないという場合には, 「install previous versions of PyTorch」をクリックし,そのページの記載に従う.

    • PyTorch Build: 「Stable
    • Your OS: 「Windows」 ・・・ Windows にインストールするので
    • Package: 「pip
    • Language: ・・・ Python を選ぶ
    • CUDA: 「11.3」 ・・・ CUDA 11 をインストールした場合

    [image]
  3. 「Run the command」のところに,コマンドが表示されるので確認する

    [image]
  4. 表示されたコマンドを実行.「pip3」は「python -m pip」に読み替える.

    コマンドプロンプト管理者として実行し,次のように,コマンドを実行

    Windows での pip の実行では,コマンドプロンプト管理者として実行することにする.

    Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

    python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
    

    [image]
  5. その結果,エラーメッセージが出ていないことを確認.
  6. PyTorch のバージョン確認

    端末で,次のコマンドを実行..

    ※ バージョン番号が表示されれば OK.

    python -c "import torch; print( torch.__version__ )"
    

    [image]
  7. PyTorch の動作確認

    https://pytorch.org/get-started/locally/ に記載のサンプルプログラムを実行してみる

    Python プログラムの実行

    from __future__ import print_function
    import torch
    x = torch.rand(5, 3)
    print(x)
    exit()
    

    [image]
  8. GPU が動作しているか確認

    次の Python プログラムを実行して確認.

    import torch
    torch.cuda.is_available()
    exit()
    

    [image]

7. ディープラーニング応用

dlib, face_recognition(顔検出,顔のアラインメント,顔のランドマーク,顔認識その他)

OpenPose (人体の姿勢推定,指のポーズ推定)

getBaseModels.bat を実行する.

cd C:\openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended\openpose
cd models
getBaseModels.bat

OpenPose の動作確認のため,次を実行.エラーメッセージが出ずに,顔検出の結果が表示されれば OK とする.

cd C:\openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended\openpose
bin\OpenPoseDemo.exe --video examples\media\video.avi

Tesseract OCR 5 (文字認識)

Github dyama/alpr_jp

次を実行する.

cd c:\
rmdir /s /q alpr_jp
git clone https://github.com/dyama/alpr_jp

ipazc/mtcnn

Windowspip を実行するときは,コマンドプロンプト管理者として実行し,それを使って pip を実行することにする.

コマンドプロンプト管理者として実行し,次のコマンドを実行.

python -m pip install git+https://github.com/ipazc/mtcnn.git
python -c "import mtcnn; print(mtcnn.__version__)"

matterplot/masked_rcnn (画像のセグメンテーション)

matterplot/masked_rcnn の URL: https://github.com/matterport/Mask_RCNN

コマンドプロンプト管理者として実行し,次のコマンドを実行.

python -m pip install scikit-image cython
python -m pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
cd c:\pytools
rmdir /s /q Mask_RCNN
git clone --recursive https://github.com/matterport/Mask_RCNN
cd Mask_RCNN
python -m pip install -r requirements.txt
python setup.py build
python setup.py install
cd samples/coco

https://github.com/matterport/Mask_RCNN/blob/master/samples/demo.ipynb に記載のプログラムを実行してみる.

Meshroom(写真測量,フォトグラメトリ)

muZero

コマンドプロンプト管理者として実行し,次のコマンドを実行.

rmdir /s /q c:\muzero-general
cd c:\
git clone https://github.com/werner-duvaud/muzero-general.git
cd muzero-general
python -m pip install -r requirements.txt

確認のため実行してみる.

python muzero.py
tensorboard --logdir ./results

OpenAIGym

コマンドプロンプト管理者として実行し,次のコマンドを実行.

rmdir /s /q c:\gym
cd c:\
git clone https://github.com/openai/gym.git
cd gym
python -m pip install -e .