金子邦彦研究室インストールWindows の種々のソフトウェア(インストール)Windows での主要なソフトウェアのインストールと設定(Windows 上)

Windows での主要なソフトウェアのインストールと設定(Windows 上)

Windows パソコンを用いて,データベースシステム,人工知能,3次元コンピュータグラフィックスや各種メディア処理,プログラミングなどに 活用したいと思っている人向け。

このページでは,プログラミング処理系と開発環境(プログラムの自作、オープンソフトウェアの活用)、 データベース処理、 メディア処理、 その他のアプリケーション(インターネット、ファイル操作など)、 NVIDIA ドライバや NVIDIA CUDA や NVIDIA cuDNN, ディープライニング応用のための各種ソフトウェアのインストール及び設定手順をまとめている。

目次

  1. Windows での操作(注意点まとめ)
  2. ツール類
  3. Build Tools for Visual Studio (ビルドツール for Visual Studio)のインストール
  4. Git, cmake, Wget, 7-Zip のインストール
  5. NVIDIA ドライバ,NVIDIA CUDA ツールキット, NVIDIA cuDNN のインストール
  6. Python のインストール,pip と setuptools の更新,Python 開発環境のインストール,Python の種々のパッケージ
  7. numpy, scikit-learn, TensorFlow, Keras, MatplotLib, opencv-python, PyTorch
  8. ディープラーニング応用
  9. 数値演算ライブラリ
  10. エディタ
  11. Web ブラウザ,リモート接続,リモート操作
  12. ツール類(ファイル検索,スクリーンショット,作図ツール,Microsoft Office,Windows Sysintenals)
  13. PostgreSQL の利用
  14. データベースツール等
  15. メディア(地図情報,ビデオ,3次元コンピュータグラフィックス,3次元点群,チャート)
  16. Java,Java 開発環境
  17. R システム
  18. Android Studio

注意事項

サイト内のまとめページへのリンク

サイト内の主な Windows 関連ページ

Ubuntu のインストール,設定,セットアップ別ページ »にまとめ

YouTube の再生リスト「インストールと設定(フリーソフトウェアの活用のために)」
https://www.youtube.com/playlist?list=PLwoDcGBEg9WGSPnYNwhz04zvQF5FCnT7a

YouTube のチャンネル「金子邦彦」
https://youtube.com/user/kunihikokaneko

謝辞:ここで紹介しているソフトウェアの作者に感謝します.

1. Windows での操作(注意点まとめ)

2. ツール類

私がよく使用するツール類

3. Build Tools for Visual Studio (ビルドツール for Visual Studio)のインストール

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)のインストール(Windows 上)

Build Tools for Visual Studio (ビルドツール for Visual Studio)は,Windows で動くMicrosoft の C++ コンパイラーである.

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)のダウンロードページ

https://visualstudio.microsoft.com/ja/visual-cpp-build-tools/

Build Tools for Visual Studio 2022 (ビルドツール for Visual Studio 2022)のインストール

  1. ダウンロード URL を開く

    https://visualstudio.microsoft.com/ja/downloads/

  2. このページの下の方の「Visual Studio 2022用のツール」を展開

    [image]
  3. Build Tools for Visual Studio 2022」の右の「ダウンロード」をクリック.

    [image]
  4. ダウンロードが始まる

    [image]
  5. ダウンロードした .exe ファイルを実行する
  6. 表示を確認し,「続行」をクリック

    [image]
  7. C++ によるデスクトップ開発」をクリック.「インストール」をクリック.

    [image]
  8. ダウンロードとインストールが始まる

    [image]
  9. インストール終了の確認

    [image]

確認のため,コマンドで C プログラムをコンパイルしてみる

Microsoft Visual Studio の C/C++ をコマンドで使いたいときは, Visual Studio の x64 Native Tools コマンドプロンプトを使う.

  1. Visual Studio の x64 Native Tools コマンドプロンプトを開く.

    Windows のスタートメニューで「Visual Studio 2022」の下の「x64 Native Tools Command Prompt for VS 2022」で起動する.(あるいは類似のものを探す).「x64」は,64ビット版の意味である.

    以下の操作は,x64 Native Tools コマンドプロンプトで行う

  2. cl にパスが通っていることを確認する

    エラーメッセージが出ていないことを確認.

    where cl
    

    [image]

    ※ 「cl が無い」 という場合は,次の手順で,Visual Studio Build Tools 2022C++ についての設定を行う.

    1. C++ についての設定をしたいので、Visual Studio Installer (Visual Studio インストーラー)を起動

      Windowsのスタートメニューからの起動が簡単

    2. Visual Studio Build Tools 2022 の画面で「変更」をクリック
    3. C++ によるデスクトップ開発」をチェック.そして,画面右側の「インストール」の詳細で「v143 ビルドツール用 C++/CLI サポート(最新)」をチェックする.その後,「インストール」をクリック.
    4. インストールが始まる.しばらく待つ.
  3. コンパイラの動作確認

    まず,エディタを開く. ここではメモ帳 (notepad) を使っている.

    x64 Native Tools コマンドプロンプト で,次のコマンドを実行する. ファイル名は hello.c としている.

    c:
    cd %HOMEPATH%
    notepad hello.c
    

    [image]
  4. いまメモ帳で開いたファイルを, 次のように編集する(コピー&ペーストしてください).そして保存する.
    #include<stdio.h>
    int main() {
        printf("Hello,World!\n");
        printf("sizeof(size_t)=%ld\n", sizeof(size_t));
        return 0;
    }
    

    [image]
  5. 次のコマンドを実行

    x64 Native Tools コマンドプロンプトを使うこと.

    結果として,「Hello,World!」「sizeof(size_t)=8」と表示されればOK.

    del hello.exe
    cl hello.c
    .\hello.exe
    

    実行結果例

    [image]

4. Git, cmake, Wget, 7-Zip のインストール

4.1 Git のインストール

Git のページ https://git-scm.com/ からダウンロードしてインストール:

Git のインストールの詳細: 別ページ »で説明

  1.  Git のページを開く

    https://git-scm.com/

  2.  ダウンロードしたいので「Downloads」をクリック

    [image]
  3. Windows 版が欲しいので 「Windows」をクリック.

    [image]

    [image]
  4. ダウンロードした .exe ファイルを実行

    このとき,ライセンス条項の確認を行う.設定は既定(デフォルト)のままでも問題はない.

4.2 cmake のインストール

cmake のダウンロードのページ https://cmake.org/download/ からダウンロードしてインストール

cmake のインストールの詳細: 別ページ »で説明

  1. cmake のダウンロードのページを開く

    https://cmake.org/download/

  2. 最新のWindows版バイナリを選ぶ(拡張子は .msi)

    下の図では 64ビットWindows 用を選んでいる

    [image]

4.3 Wget のインストール

GnuWinWget のページからダウンロードしてインストール

詳しくは,別ページ »で説明

  1. Wget のダウンロードのページを開く

    https://cmake.org/download/ からダウンロードしてインストール

  2.  ダウンロードしたいので「Download」 の「Complete packages, except sources」の右横の 「Setup」をクリック

    [image]
  3. ダウンロードした .exe ファイルを実行

    このとき,ライセンス条項の確認を行う.設定は既定(デフォルト)のままでよい.

4.4 7-Zip のインストール

7-Zip は,Windows で動くソフトウェア.ファイルの圧縮や展開の機能を持つ.

7-Zip のページ: https://sevenzip.osdn.jp/ からダウンロードしてインストールする.

7-Zip のインストールの詳細: 別ページ »で説明

  1.  7-Zip のページを開く
    https://sevenzip.osdn.jp/
  2.  ダウンロードしたいので,「7-Zip ... for Windows」の下の,「64 ビット x64」の「ダウンロード」をクリック

    [image]
  3. ダウンロードした .exe ファイルを実行
  4. Windowsシステム環境変数 Pathc:\Program Files\7-Zip追加することにより,パスを通す

    Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

    Windowsコマンドプロンプト管理者として実行するには, 検索窓で「cmd」と入れたあと, 右クリックメニューで「管理者として実行」を選ぶのが簡単.

    [image]
    call powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\Program Files\7-Zip\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
    

5. NVIDIA ドライバ,NVIDIA CUDA ツールキット, NVIDIA cuDNN のインストール

GPU

GPU は,グラフィックス・プロセッシング・ユニット(Graphics Processing Unit)の略である.現在は,3次元のビデオゲーム,さまざまな計算,ディープラーニングの高速な並列処理などに用いられている.

NVIDIA CUDA ツールキット

NVIDIA CUDA ツールキット は,NVIDIA社が提供する GPU 用のツールキットである.GPU を用いた演算のプログラム作成や動作のための各種機能を備えている.ディープラーニングでも利用されている.

サイト内の関連ページ

関連する外部ページ

NVIDIA CUDA ツールキットのインストール時の注意点

NVIDIA CUDA ツールキットの動作に必要なもの

Windows でインストールするときの注意点

NVIDIA cuDNN

NVIDIA cuDNN は, NVIDIA CUDA ツールキット上で動作するディープラーニング・ライブラリである. 畳み込みニューラルネットワークや リカレントニューラルネットワークなど,さまざまなディープラーニングで利用されている.

Windows で,NVIDIA cuDNN の利用時に 「Could not locate zlibwapi.dll. Please make sure it is in your library path!」と表示されるときは, ZLIB DLL をインストールすること.

関連する外部ページ

NVIDIA cuDNN のインストール時の注意点

NVIDIA cuDNN の動作に必要なもの

NVIDIA ドライバ

NVIDIA ドライバは,NVIDIA 社製の GPU を動作させるのに必要なドライバである.次の NVIDIA の公式サイトからダウンロードできる.ダウンロードのときは,使用しているオペレーティングシステムとGPUに適したものを選ぶこと.

関連する外部ページ

NVIDIA ドライバのダウンロードの公式ページ: https://www.nvidia.co.jp/Download/index.aspx?lang=jp

以下,インストールの注意点をまとめている. NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN インストールと動作確認の詳細別ページ »で説明

① TensorFlow, PyTorch が必要とするNVIDIA CUDA ツールキットとNVIDIA cuDNN のバージョンの確認

TensorFlow GPU 版

Tensorflowは, データフローグラフ (data flow graph) を特色とするフレームワークの機能を持つ Pythonのパッケージ. データフローグラフでは, 節が数値演算,枝が多次元の配列(テンソル)になっている. Python, C/C++ 言語から利用可能.機械学習のアプリケーションを簡単に作成できるもの. プロセッサ(CPU), GPU, Google TPU で動く. Google 社のディープラーニング研究プロジェクト. 2015年11月に最初のリリース.

TensorFlow のデータセットとして,https://github.com/tensorflow/datasets などで・音声,画像,テキスト,ビデオのデータが多数公開されており,学習に利用できる

TensorFlow GPU 版の動作に必要なもの

古いバージョンである2.4.4 あるいはそれ以前のバージョン のTensorFlow を使う場合は, 最新NVIDIA cuDNNを使わないこと. 詳しくは,別ページ »で説明

② NVIDIA ドライバ,NVIDIA CUDA ツールキット,NVIDIA cuDNN のインストールでの注意点

以下,インストールの注意点をまとめている. Windows での NVIDIA ドライバNVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN 8.6 のインストールと動作確認の詳細別ページ »で説明

NVIDIA ドライバのインストールでの注意点まとめ(Windows 上)
NVIDIA CUDA ツールキットのインストールでの注意点まとめ(Windows 上)
NVIDIA cuDNN のインストールでの注意点まとめ(Windows 上)

6. Python のインストール,pip と setuptools の更新,Python 開発環境のインストール,Python の種々のパッケージ

① インストールする Python のバージョンの確認

2022年12月時点では, Python 3.10 を使う.

Python 3.10 の根拠:

古いバージョンTensorFlow,PyTorch を使う予定の場合.

次により, Python, TensorFlow, PyTorch のバージョンの組み合わせを確認し,それにあったバージョンの Python をインストールする必要がある.

② Python のインストール

Python のインストールでの注意点

インストール手順の詳細(別ページ)

Windows での Python のインストール: 別ページ »で説明

Python の公式ページ

https://www.python.org/

③ pip と setuptools の更新

  1. Windows で,コマンドプロンプト管理者として実行

    Windowspip を実行するときは,コマンドプロンプト管理者として開き,それを使って pip を実行することにする.

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. 次のコマンドを実行する.
    python -m pip install -U pip setuptools
    

    [image]

【pip の利用】

Windows では,pip は,次のコマンドで起動できる.

pip または python -m pip または py -3.10 -m pip のようにバージョン指定.

Windows では,管理者として実行.

④ Python 開発環境として,Python コンソール(Jupyter Qt Console), Jupyter ノートブック (Jupyter Notebook), Jupyter Lab, Nteract, spyder のインストール

  1. Windows で,コマンドプロンプト管理者として実行

    Windowspip を実行するときは,コマンドプロンプト管理者として開き,それを使って pip を実行することにする.

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. 次のコマンドを実行する.

    python -m pip install -U pip setuptools jupyterlab jupyter jupyter-console jupytext PyQt5 nteract_on_jupyter spyder
    

    [image]

他の Python の開発環境

⑤ Jupyter Qt Console, NTeract が起動できるかを確認

  1. numpy, matplotlib のインストール

    Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

    pip install -U numpy matplotlib
    
  2. Jupyter Qt Console の起動チェック

    新しくコマンドプロンプトを開き,次のコマンドを実行する. Jupyter Qt Console が開けば OK.

    jupyter qtconsole
    

    [image]

    [image]
  3. 確認のため,Jupyter Qt Console で,次の Python プログラムを実行する
    import numpy as np
    %matplotlib inline
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings
    
    x = np.linspace(0, 6, 100)
    plt.style.use('default')
    plt.plot(x, np.sin(x))
    

    [image]
  4. nteract の起動チェック

    新しくコマンドプロンプトを開き,次のコマンドを実行する. ntetact が開けば OK.

    jupyter nteract
    

    [image]
    [image]
  5. 確認のため,nteract で,次の Python プログラムを実行してみる.

    そのために「Start a new notebook」の下の「Python」をクリック,次の Python プログラムを実行する

    import numpy as np
    %matplotlib inline
    import matplotlib.pyplot as plt
    import warnings
    warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings
    
    x = np.linspace(0, 6, 100)
    plt.style.use('default')
    plt.plot(x, np.sin(x))
    

    [image]
  6. Juypter Notebook で,保存のときに,.py ファイルと .ipyrb ファイルが保存されるように設定.(この設定を行わないときは .ipyrb ファイルのみが保存される)
    1. 次のコマンドで,設定ファイルを生成

      jupyter notebook --generate-config
      
    2. jupyter/jupyter_notebook_config.py を編集し,末尾に,次を追加

      c.NotebookApp.contents_manager_class = "jupytext.TextFileContentsManager"

    3. jupyter notebook を起動し,Edit, Edit Notbook Manager を選ぶ.次のように設定する.

      "jupytext": {"formats": "ipynb,py"}

⑥ numpy, scikit-learn を使ってみる

⑦ Python の種々のパッケージ

その他,Python パッケージは,必要なものをインストール.次に手順を例示している. 利用者で判断すること.

7. numpy, scikit-learn, TensorFlow, Keras, MatplotLib, opencv-python, PyTorch

① TensorFlow GPU 版 2.10, Keras, MatplotLib, Python 用 opencv-python のインストール

設定の要点

システム環境変数 TF_FORCE_GPU_ALLOW_GROWTH の設定: true

  1. Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  2. 使用する Python のバージョンの確認
    python --version
    

    [image]
  3. pip と setuptools の更新

    ※ 「 python -m pip install ...」は,Python パッケージをインストールするためのコマンド.

    python -m pip install -U pip setuptools
    

    [image]
  4. TensorFlow 関係のパッケージのアンインストール操作

    トラブルの可能性を減らすために,関係のパッケージのアンインストールを行っておく.

    Windowspip を実行するときは,コマンドプロンプト管理者として開き,それを使って pip を実行することにする.

    python -m pip uninstall -y tensorflow tensorflow-cpu tensorflow-gpu tensorflow-intel tensorflow-text tf-models-official tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer
    

    [image]
  5. TensorFlow GPU 版 2.10 ,Keras, 関連ソフトウェアのインストール

    pip を用いてインストール

    python -m pip install -U tensorflow==2.10.1 tf_slim tensorflow_datasets tensorflow-hub keras keras-tuner keras-visualizer
    python -m pip install git+https://github.com/tensorflow/docs
    python -m pip install git+https://github.com/tensorflow/examples.git
    python -m pip install git+https://www.github.com/keras-team/keras-contrib.git
    

    [image]
    (以下省略)
  6. MatplotLib, Python 用 opencv-python のインストール

    pip を用いてインストール

    python -m pip install -U  numpy pillow pydot matplotlib seaborn pandas scipy scikit-learn scikit-learn-intelex opencv-python opencv-contrib-python
    
  7. TensorFlow のバージョン確認

    バージョン番号が表示されれば OK.下の図とは違うバージョンが表示されることがある.

    python -c "import tensorflow as tf; print( tf.__version__ )"
    

    [image]

    次のようなメッセージが出た場合には,メッセージに従い, NVIDIA ドライバNVIDIA CUDA ツールキットNVIDIA cuDNN のインストールを行う. 但し,GPU がない場合には,このメッセージを無視する.

    [image]
  8. TensorFlow パッケージの情報の表示

    pip show tensorflow
    

    [image]
  9. (GPU を使うとき) TensorFlow からGPU が認識できているかの確認

    TensorFlow が GPU を認識できているかの確認は,端末で,次を実行して行う.

    python -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"
    

    実行結果の中に,次のように「device_type: "GPU"」があれば,GPUが認識できている.エラーメッセージが出ていないことを確認しておくこと.

    [image]

    ここで,GPU があるのに,TensorFlow から認識されていないかもしれない. TensorFlow GPU 版が指定するバージョンの NVIDIA CUDA ツールキットNVIDIA cuDNN がインストールされていないことが原因かも知れない.

    TensorFlow 2.5 の GPU 版での,cuDNN のバージョンは 8.2TensorFlow 2.4 の GPU 版での,cuDNN のバージョンは 8.0.5TensorFlow 2.3, 2.2, 2.1 の GPU 版での,cuDNN のバージョンは 7.6.そして,TensorFlow 1.13 以上 TensorFlow 2.0 までの GPU 版での,cuDNN のバージョンは7.4 が良いようである.

    Windows での NVIDIA ドライバNVIDIA CUDA ツールキット 11.8,NVIDIA cuDNN v8.8 のインストールと動作確認: 別ページ »で説明

  10. Windowsシステム環境変数 TF_FORCE_GPU_ALLOW_GROWTH に,true を設定

    Windows で,コマンドプロンプト管理者として実行

    コマンドプロンプトを管理者として実行: 別ページ »で説明

  11. 次のコマンドを実行
    call powershell -command "[System.Environment]::SetEnvironmentVariable(\"TF_FORCE_GPU_ALLOW_GROWTH\", \"true\", \"Machine\")"
    

    [image]

② TensorFlow, Keras, VGG 16, InceptionV3, Imagenet による画像分類を試してみる

  1. 前準備として h5py, pillow のインストール

    python -m pip install -U h5py pillow
    
  2. 画像の準備

    10.png のようなファイル名で保存しておく

    [image]
  3. Python プログラムの実行
    cd <画像を置いたディレクトリ>
    python  
    

    [image]
  4. VGG 16, Imagenet による学習済みの重みデータによる画像分類を試してみる

    次のプログラムをコピー&ペースト

    Kerasのサイトで公開されているものを少し書き換えて使用。

    「'10.png'」のところは,実際に使用する画像ファイル名に書き換えること.

    Python プログラムを実行する

    import h5py
    from tensorflow.keras.preprocessing import image
    from tensorflow.keras.applications.vgg16 import VGG16
    from tensorflow.keras.applications.vgg16 import preprocess_input
    import numpy as np
    
    m = VGG16(weights='imagenet', include_top=False)
    
    img_path = '10.png'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    features = m.predict(x)
    print(features) 
    

    [image]

    python の終了は「exit()」

  5. InceptionV3, Imagenet による学習済みの重みデータによる画像分類を試してみる

    次のプログラムをコピー&ペースト

    Kerasのサイトで公開されているものを少し書き換えて使用。

    「'10.png'」のところは,実際に使用する画像ファイル名に書き換えること.

    Python プログラムを実行する

    import h5py
    from tensorflow.keras.preprocessing import image
    from tensorflow.keras.applications.inception_v3 import preprocess_input, decode_predictions, InceptionV3
    import numpy as np
    
    m = InceptionV3(weights='imagenet')
    
    img_path = '10.png'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    
    preds = m.predict(x)
    
    print('Predicted:')
    for p in decode_predictions(preds, top=5)[0]:
        print("Score {}, Label {}".format(p[2], p[1]))
    

    [image]

    python の終了は「exit()」

③ PyTorch, Torchvision, Caffe2

Web ブラウザで最新情報を確認ののち,所定のコマンドによりインストールを行う.

PyTorch の URL: https://pytorch.org/

  1. PyTorch の「はじめよう」の Web ページを開く

    https://pytorch.org/get-started/locally/

  2. 種類を選ぶ

    Windows, pip, Python,NVIDIA CUDA ツールキット 11.3 以上 での実行例

    NVIDIA CUDA ツールキットのバージョンは一致するものを選ぶ. 選択肢として出てこないという場合には, 「install previous versions of PyTorch」をクリックし,そのページの記載に従う.

    [image]
  3. 「Run the command」のところに,コマンドが表示されるので確認する

    [image]
  4. 表示されたコマンドを実行.「pip3」は「python -m pip」に読み替える.

    コマンドプロンプトを管理者として開き,次のように,コマンドを実行

    Windowspip を実行するときは,コマンドプロンプト管理者として開き,それを使って pip を実行することにする.

    次のコマンドは, PyTorch 2.0 (NVIDIA CUDA 11.8 用) をインストールする. 事前に NVIDIA CUDA のバージョンを確認しておくこと(ここでは,NVIDIA CUDA ツールキット 11.8 が前もってインストール済みであるとする).

    python -m pip install -U pip
    python -m pip install -U torch torchvision torchaudio numpy numba --index-url https://download.pytorch.org/whl/cu118
    python -c "import torch; print(torch.__version__, torch.cuda.is_available())" 
    

    (途中省略)
    [image]
  5. その結果,エラーメッセージが出ていないことを確認.
  6. PyTorch のバージョン確認

    次のコマンドを実行.

    ※ バージョン番号が表示されれば OK.

    python -c "import torch; print( torch.__version__ )"
    

    [image]
  7. PyTorch の動作確認

    https://pytorch.org/get-started/locally/ に記載のサンプルプログラムを実行してみる

    Python プログラムを実行する

    from __future__ import print_function
    import torch
    x = torch.rand(5, 3)
    print(x)
    exit()
    

    [image]
  8. GPU が動作しているか確認

    Python プログラムを実行する

    import torch
    torch.cuda.is_available()
    exit()
    

    [image]

8. ディープラーニング応用

8.1 dlib, face_recognition(顔検出,顔のアラインメント,顔のランドマーク,顔認識その他)

関連する外部ページ

インストール手順の詳細(別ページ)

Dlib のインストール操作

Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

11.7」のところは,実際にインストールしている NVIDIA CUDA ツールキットのバージョンにあわせること.

cd C:\
rmdir /s /q dlib
git clone https://github.com/davisking/dlib
cd dlib
rmdir /s /q build
mkdir build
cd build
del CMakeCache.txt
cmake .. -G "Visual Studio 17 2022" -A x64 -T host=x64 ^
    -DCUDA_SDK_ROOT_DIR="c:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7" ^
    -DCUDA_TOOLKIT_ROOT_DIR="c:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.7" ^
    -D CUDA_NVCC_FLAGS="-allow-unsupported-compiler" ^
    -DCUDA_NVCC_FLAGS_DEBUG="-allow-unsupported-compiler" ^
    -DCMAKE_INSTALL_PREFIX=c:/dlib ^
    -DUSE_AVX_INSTRUCTIONS=1 

cmake --build . --config RELEASE --target INSTALL

python -m pip uninstall -y dlib
cd C:\
cd dlib
python setup.py build 
python setup.py install 
python -c "import dlib; print( dlib.__version__ )"

call powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";c:\dlib\bin\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"

cd C:\dlib
cd python_examples
curl -O http://dlib.net/files/mmod_human_face_detector.dat.bz2
curl -O http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2
curl -O http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2
curl -O http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"c:\Program Files\7-Zip\7z.exe" x mmod_human_face_detector.dat.bz2
"c:\Program Files\7-Zip\7z.exe" x dlib_face_recognition_resnet_model_v1.dat.bz2
"c:\Program Files\7-Zip\7z.exe" x shape_predictor_5_face_landmarks.dat.bz2
"c:\Program Files\7-Zip\7z.exe" x shape_predictor_68_face_landmarks.dat.bz2
del mmod_human_face_detector.dat.bz2
del dlib_face_recognition_resnet_model_v1.dat.bz2
del shape_predictor_5_face_landmarks.dat.bz2
del shape_predictor_68_face_landmarks.dat.bz2

Dlib の動作確認のため,次を実行.エラーメッセージが出ずに,顔検出の結果が表示されれば OK とする.

cd C:\dlib
cd python_examples
python cnn_face_detector.py mmod_human_face_detector.dat ..\examples\faces\2007_007763.jpg

[image]

[image]

face_recognition のインストール操作

Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

cd %HOMEPATH%
rmdir /s /q face_recognition
git clone https://github.com/ageitgey/face_recognition
cd face_recognition
copy C:\dlib\python_examples\shape_predictor_68_face_landmarks.dat .
python setup.py build
python setup.py install 

face_recognition の動作確認のため,次を実行.エラーメッセージが出ずに,顔識別の結果が表示されれば OK とする.

mkdir %HOMEPATH%\face_recognition\known_people
mkdir %HOMEPATH%\face_recognition\unknown_pictures
copy %HOMEPATH%\face_recognition\examples\biden.jpg %HOMEPATH%\face_recognition\known_people
copy %HOMEPATH%\face_recognition\examples\obama.jpg %HOMEPATH%\face_recognition\known_people
copy %HOMEPATH%\face_recognition\examples\two_people.jpg %HOMEPATH%\face_recognition\unknown_pictures
cd %HOMEPATH%\face_recognition
face_recognition --show-distance true known_people unknown_pictures

[image]

8.2 ipazc/mtcnn

関連する外部ページ

ipazc/mtcnn のインストール手順(Windows 上)

  1. インストール

    Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

    Windowspip を実行するときは,コマンドプロンプト管理者として開き,それを使って pip を実行することにする.

    python -m pip install git+https://github.com/ipazc/mtcnn.git
    python -c "import mtcnn; print(mtcnn.__version__)"
    
  2. 動作確認

    Windows で,コマンドプロンプトを実行. 次のコマンドを実行

    cd C:\dlib
    python
    

    次の Python プログラムを実行

    mtcnn の公式ページのプログラムを使用 (https://github.com/ipazc/mtcnn)

    Python プログラムを実行する

    from mtcnn import MTCNN
    import cv2
    
    img = cv2.cvtColor(cv2.imread("./examples/faces/2007_007763.jpg"), cv2.COLOR_BGR2RGB)
    detector = MTCNN()
    detector.detect_faces(img)
    

    [image]

8.3 OpenPose (人体の姿勢推定,指のポーズ推定)

関連する外部ページ

インストール手順の詳細(別ページ)

OpenPose の動作確認のため,次を実行.エラーメッセージが出ずに,検出の結果が表示されれば OK とする.

cd C:\openpose-1.7.0-binaries-win64-gpu-python3.7-flir-3d_recommended
cd openpose
bin\OpenPoseDemo.exe --video examples\media\video.avi

[image]

8.4 Tesseract OCR 5 (文字認識)

関連する外部ページ

インストール手順の詳細(別ページ)

8.5 matterplot/masked_rcnn (画像のセグメンテーション)

matterplot/masked_rcnn の URL: https://github.com/matterport/Mask_RCNN

Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

python -m pip install scikit-image cython
python -m pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
cd %HOMEPATH%
rmdir /s /q Mask_RCNN
git clone --recursive https://github.com/matterport/Mask_RCNN
cd Mask_RCNN
python -m pip install -r requirements.txt
python setup.py build
python setup.py install
cd samples/coco

https://github.com/matterport/Mask_RCNN/blob/master/samples/demo.ipynb に記載のプログラムを実行してみる.

8.6 Meshroom (写真測量,フォトグラメトリ)

関連する外部ページ

Meshroom のインストール操作(Windows 上)

8.7 muZero

Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

rmdir /s /q c:\muzero-general
cd c:\
git clone https://github.com/werner-duvaud/muzero-general.git
cd muzero-general
python -m pip install -r requirements.txt

確認のため実行してみる.

python muzero.py
tensorboard --logdir ./results

8.8 OpenAIGym

Windows では,コマンドプロン プトを管理者として実行し, 次のコマンドを実行する.

rmdir /s /q c:\gym
cd c:\
git clone https://github.com/openai/gym.git
cd gym
python -m pip install -e .

9. 数値演算ライブラリ

Intel Performance ライブラリ (Intel oneAPI TBB, Intel oneAPI DNNL, Intel oneAPI MKL, Intel oneAPI IPP, Intel Distribution for Python)

必要な場合にはインストールを行う.このソフトウェアについても,必ず利用条件を確認すること.

10. エディタ

Visual Studio Code (エディタ)

Visual Studio Code はエディタ.軽快動作.操作法は簡単.  プログラム作成に向いた拡張機能が充実.Linux などでも動く.

インストール手順

ダウンロードしインストールする.

動画リンク: https://www.youtube.com/watch?v=2SVnOoJg4JY

Visual Studio Code で Python を使う(Python プログラムの作成と実行)

動画リンク https://www.youtube.com/watch?v=B2QB8gvk11g

Visual Studio Code拡張機能は,必要なものをインストールする.次に拡張機能を例示している.利用者で判断すること.

11. PopstgreSQL

インストール

ダウンロードの URL: http://www.postgresql.jp/download

PostgreSQL 13.1, pgAdmin 4, pgJDBC, psqlODBC, PostGIS などのインストールを簡単に行うことができる.

インストールにより,既定(デフォルト)では次のようにように設定される.

インストール時に postgres のパスワードを設定すること.

システム環境変数の設定

システム環境変数 Pathに,C:\Program Files\PostgreSQL\13\bin追加することにより,パスを通す

Windows で,コマンドプロンプト管理者として実行

コマンドプロンプトを管理者として実行: 別ページ »で説明

  • 次のコマンドを実行
    call powershell -command "$oldpath = [System.Environment]::GetEnvironmentVariable(\"Path\", \"Machine\"); $oldpath += \";C:\Program Files\PostgreSQL\13\bin\"; [System.Environment]::SetEnvironmentVariable(\"Path\", $oldpath, \"Machine\")"
    

    psql などを扱いやすくするために,Windows のシステムの環境変数を次のように設定する.

    postgres.conf の設定例

    Windows での設定例.Windows マシンをPostgreSQL 専用に使うとき,そして,メインメモリが 32 GB のときは,それに合わせて設定する.

    shared_buffers = 4GB
    work_mem = 1GB
    shared_memory_type=windows
    max_files_per_process = 1000
    effective_cache_size = 16GB
    

    パーソナルに使う場合は,オンライントランザクション処理を行わないので,WAL の機能を実質オフににして運用する可能性がある.

    wal_level = minimal
    archive_mode = off
    max_wal_senders = 0
    

    データベースファイルを SSD, NVMe に置くときは,次のように設定

    random_page_cost = 1.1
    

    psql の基本操作

    SQL の実行手順例

    psql を用いてインタラクティブに実行する場合.

    psql
    create table T (id integer, name text);
    insert into T values(1, 'hello');
    select * from T;
    \q
    

    psql を用いて外部ファイルを実行する場合

    psql
    \i hoge.sql
    \q
    

    PL/Python Extension のインストール

    psql を起動し,次のコマンドを実行することにより,インストールする. インストールがうまく行かない場合には,Python のバージョンが合致しないことが考えられる. Python のバージョンについては,インストールのドキュメントや Dependency (https://github.com/lucasg/Dependencies) で確認することができる.

    CREATE EXTENSION plpython3u;
    SELECT * FROM pg_language;
    

    12. データベースツール等

    DBeaver Community Edition

    DBeaver Community Edition はデータベースツール. dbeaver で起動.

    動作には,Java 11 以上が必要.「java -version」でバージョンを確認できる.

    1. 接続タイプを選ぶ
    2. 「ドライバファイルをダウンロードする」の画面が出ることがある. そのときは,次の手順で,ドライバファイルをダウンロードする.
      1. 「ドライバの編集」をクリック
      2. ダウンロード中のときは,ダウンロード終了を待つ.そして,ドライバファイルを確認し、OK をクリック
      3. 「ドライバをダウンロードする」の画面で,ドライバのファイルを選び「ダウンロード」をクリック.
    3. Host, Database, ユーザ名, パスワードを設定する.ポート番号を確認する.そして,「終了」をクリック.

    SQL Workbench/J

    SQLite 3

    sqliteman

    Windowsコマンドプロンプト管理者として実行し, 次のコマンドを実行

    C:
    mkdir c:\tools
    cd c:\tools
    curl -O --no-check-certificate https://jaist.dl.sourceforge.net/project/sqliteman/sqliteman/1.2.2/Sqliteman-1.2.2-win32.zip
     "c:\Program Files\7-Zip\7z.exe" x Sqliteman-1.2.2-win32.zip
    move Sqliteman-1.2.2\*.* .
    rmdir /s /q Sqliteman-1.2.2
    del /q Sqliteman-1.2.2-win32.zip
    

    SQLite Studio 3.2.1

    sqlitestudio, sqlitestudiocli で起動.

    Windowsコマンドプロンプト管理者として実行し, 次のコマンドを実行

    C:
    mkdir c:\tools
    cd c:\tools
    curl -O https://github.com/pawelsalawa/sqlitestudio/releases/download/3.2.1/SQLiteStudio-3.2.1.zip
     "c:\Program Files\7-Zip\7z.exe" x SQLiteStudio-3.2.1.zip
    

    13. メディア(地図情報、ビデオ、3次元コンピュータグラフィックス、3次元点群、プロットデジタイザ)

    OSGeo4W 32ビット版

    OSGeo4W は,GDAL/OGR,GRASS,OPenEV,uDig,QGIS などの多数のパッケージの組み合わせ

    Google Earth Pro

    VLC Media Player

    Avidemux (ビデオ編集)

    FFmpeg(ビデオデータ処理)

    GraphicMagick (画像処理のツール類)

    Blender 3.3 (3次元コンピュータグラフィックス)

    Blender は,3次元コンピュータグラフィックスの定番の1つ. モデリング,レンダリング,アニメーションなどのさまざまな機能を持つ.

    ダウンロードしインストールする.起動時に「日本語」を選ぶ.

    動画リンク: https://www.youtube.com/watch?v=Qz1ag1yiSn4

    MakeHuman 1.2 (人体モデル)

    人体モデリング(体形,顔,手,足,衣服,髪の毛,ポーズなど), 骨格(リグ)の形成もでき,アニメーション化にも便利

    動画リンク: https://www.youtube.com/watch?v=Bbe69OJiFqM

    Blender の MH community アドオンのインストール

    説明ページ https://www.kkaneko.jp/db/win/makehumaninst.html

    動画リンク: https://www.youtube.com/watch?v=yxeMj4u8HdE

    MeshLab (ポリゴン,3次元点群)

    CloudCompare (3次元点群)

    PCL (3次元点群)

    PlotDigitizer (プロットデジタイザ)

    PlotDigitizer は,画面上でマウスクリックして座標値を得る機能を持ったソフトウェア).

    14. Java,Java 開発環境

    OpenJDK 17

    OpenJDK のインストールと Java プログラムの実行: 別ページ »にまとめ

    【サイト内の Java 関連の資料】

    Eclipse

    ファイル「HelloWorld.java」の作成し,動作確認を行う.

    public class HelloWorld
    {
        public static void main(String args[])
        {
            System.out.println("Hello Java World !");
        }
    }
    

    コンパイルと実行

    javac HelloWorld.java
    java HelloWorld
    

    GreenFoot (Java 学習ソフト)

    BlueJ (Java クラス設計など)

    Web ブラウザで最新情報を確認ののち,インストールを行う.

    URL: http://www.bluej.org

    ファイル「HelloWorld.java」の作成

    public class HelloWorld
    {
        public static void main(String args[])
        {
            System.out.println("Hello Java World !");
        }
    }
    

    コンパイルと実行

    javac HelloWorld.java
    java HelloWorld
    

    15. R システム

    16. Android Studio

    インストール先として,ユーザ名 public のプロファイルにインストールしたとする

    Android Studio の設定は次のように行う.